Fate of Ammonia in Refinery Amine Systems

Nathan A. Hatcher and Ralph H. Weiland Optimized Gas Treating, Inc. Sugar Land, TX

INTRODUCTION

Ammonia ingress and accumulation in refinery and bio-gas amine systems is not a new problem. However, increasing utilization of advantaged crudes with higher nitrogen content may present challenges in today's capital-constrained operating environment. Many refiners have instituted guidelines for purging amine regenerator reflux water for corrosion control. Historically, this has been done empirically based upon periodic lab analysis and adjustment of the purge water rate.

The true amount of ammonia ingress, and its material balance across refinery amine unit is not a topic that has been discussed in great detail, because until now, rate-based mass transfer models have not been available. Using the well-known ProTreat[™] rate-based mass transfer process simulator, this paper addresses the following questions. Where available, comparisons to plant data measurements are provided.

- 1. How much ammonia can accumulate based upon choice of regenerator operating conditions?
- 2. How much ammonia rejection into the amine acid gas does this correspond to, and is this a significant concern to downstream (i.e., sulfur plant) operations?
- 3. Can ammonia build to levels that will cause additional H₂S to be trapped leading to higher lean loadings, reduced treating performance, or even regenerator flooding?
- 4. How much ammonia skates through refinery amine treaters?

Ultimately, we attempt to answer whether the ammonia balance on a refinery amine system can be fully characterized based upon the knowledge of a few simple parameters.

Taking the Guesswork Out of Gas Treating

The Fate of Ammonia in Refinery Amine Systems Nathan A. Hatcher, P.E. and Ralph H. Weiland, PhD **Optimized Gas Treating, Inc.** 2011 Brimstone-STS Sulphur Recovery Symposium Vail, CO

Objectives of Effort

- Understand NH₃ Ingress and Accumulation in Refinery Amine Systems
 - Quantify ingress and absorber pickup
 - How much can accumulate?
 - Impact of operating variables on accumulation
 - Accumulation effects on unit performance and reliability
 - Comparisons vs. real plant data

Background & Relevance

- NH₃ is an Amine
 - Simplest form possible
 - Volatile (lacks bulky alcohol chains)
 - Loves water
 - Reacts with and traps acid gases
- Acid Gases (H₂S + CO₂)
 - Toxic
 - Corrode steel in aqueous solution
 - Environmental concerns

Ammonia Volatility Ramifications

- Same basis as ProTreat[™] for amines
- Mass transfer rate-based for H₂S, CO₂, NH₃, H₂O transport; equilibrium for inerts; includes kinetics
- All separations equipment characterized by individual phase mass transfer coefficient and interfacial area correlations — similar to HTXR calculations
- Fully predictive NO GUESSWORK, no efficiencies, no HETPs, no ideal stages, don't have to know the answer first!!! but...
- Can back efficiencies out if you want to see them
- Right answers out of the box without fitting just data from P&IDs and internals vendor data sheets

ProTreat[™] How good is the VLE model?

ProTreatTM Efficiencies for H_2 S and NH_3 Stripping

© 2011 Optimized Gas Treating, Inc.

Basis for Parametric Studies

Parametric Study

- Absorber Pickup
 - Sour gas temperature: 100°F, 120°F, 140°F
 - Lean amine temperature: Sour gas + 10F ΔT
 - Feed Pressure: 900 psig, 450 psig, 125 psig
 - NH₃ in Feed: 50, 150, 500 ppmv (dry)
- Accumulation Studies
 - Condenser temperature: 120°F, 140°F, 160°F
 - Purge reflux water

Absorber NH₃ Pickup

Daramotor	Base	Elevated		Lower Absorber	
Parameter	Case	Temperature		Pressure	
Inlet Gas Temperature [°] F	100	120	140	100	100
Lean Amine Temp, ^o F	110	130	150	110	110
Absorber Pressure, psig	900	900	900	450	125
NH ₃ Conc. In Feed, ppmv	50	50	50	50	50
% NH₃ pickup in Absorber	97.5	96.9	96.2	96.5	91.5
ppmv NH3 in Treated Gas	1.3	1.6	2.0	1.9	4.4
wt % NH ₃ in reflux water	1.35	1.35	1.36	1.37	1.35
Lean H ₂ S loading	0.0084	0.0082	0.0080	0.0083	0.0081
Lean CO ₂ loading	0.0003	0.0003	0.0003	0.0003	0.0003
Treated Gas, ppmv H ₂ S	7.9	11.6	17.7	12.8	96
ppmw NH ₃ in lean amine	16.2	13.7	11.9	14.5	10.1
% CO ₂ pickup in Absorber	80.5	75.3	68.7	63.1	21.1
NH₃ in Acid Gas, %vol (wet)	0.072	0.072	0.074	0.074	0.073

Effect of NH₃ Concentration

Darameter	Base	Higher NH ₃		
Parameter	Case	Feed Content		
Inlet Gas Temperature ^o F	100	100	100	
Lean Amine Temp, ^o F	110	110	110	
Absorber Pressure, psig	900	900	900	
NH ₃ Conc. In Feed, ppmv	50	150	500	
% NH ₃ pickup in Absorber	97.5	98.3	98.7	
ppmv NH3 in Treated Gas	1.3	2.8	7.0	
wt % NH $_3$ in reflux water	1.35	2.60	5.21	
Lean H ₂ S loading	0.0084	0.0085	0.0086	
Lean CO ₂ loading	0.0003	0.0003	0.0004	
Treated Gas, ppmv H ₂ S	7.9	8.0	8.2	
ppmw NH ₃ in lean amine	16.2	33.8	85.4	
% CO ₂ pickup in Absorber	80.5	80.6	80.8	
NH₃ in Acid Gas, %vol (wet)	0.072	0.23	0.77	

Absorber Pickup Conclusions

- Higher temperature and lower pressure reduce NH₃ pickup
- NH₃ pickup efficiency increases with partial pressure in the feed
- NH₃ slip into treated gas is controlled by residual NH₃ levels in the lean amine
- CO₂ pickup is only marginally increased so the presence of NH₃ does not significantly "activate" the MDEA at these low levels.

NH₃ Vapor Profile in Absorber

- Above tray 15, NH₃ is stripped from the solvent by "lean gas"
- Below tray 15, H₂S and CO₂ pickup are significant, which binds NH₃ into solution as NH₄⁺ and NH₃COO⁻

Absorber: NH3 Ionic Concentration

Accumulation vs. Condenser Temperature

NH ₃ Conc. In Feed, ppmv	150	150	150	500	500	500
Condenser Temperature [°] F	120	140	160	120	140	160
% NH ₃ pickup in Absorber	98.3	99.0	99.4	98.7	99.2	99.5
ppmv NH3 in Treated Gas	2.8	1.7	1.0	7.0	4.3	2.9
wt % NH ₃ in reflux water	2.60	1.42	0.76	5.21	2.90	1.59
Lean H ₂ S loading	0.0085	0.0084	0.0083	0.0086	0.0085	0.0084
Lean CO ₂ loading	0.0003	0.0003	0.0003	0.0004	0.0003	0.0003
Treated Gas, ppmv H₂S	8.0	7.8	7.7	8.2	8.0	7.8
ppmw NH₃ in lean amine	33.8	20.3	12.6	85.4	52.5	35.4
% CO ₂ pickup in Absorber	80.6	80.6	80.5	80.8	80.7	80.7
NH ₃ in Acid Gas, %vol (wet)	0.23	0.22	0.21	0.77	0.75	0.70

Condenser Temperature Conclusions

- Effective at driving NH₃ into the acid gas.
 - Helps to remove more NH₃ in the absorber
 - H₂S treat marginally improved due to lower lean loading (less reflux and NH₃ + trapped H₂S to restrip)
 - Reflux circuit corrosion may not be reduced due to the higher temperature offset
- Bad for the sulfur plant

Effect of Reflux Purging

NH ₃ Conc. In Feed, ppmv	500	500	500	500
% Reflux Water Purged	0	15	75	51*
% NH ₃ pickup in Absorber	98.7	99.1	99.7	99.3
ppmv NH3 in Treated Gas	7.0	4.7	1.8	3.5
wt % NH ₃ in reflux water	5.21	3.87	1.6	0.99
Lean H ₂ S loading	0.0086	0.0085	0.0081	0.0086
Lean CO ₂ loading	0.0004	0.0003	0.0003	0.0003
Treated Gas, ppmv H ₂ S	8.2	8.0	7.4	8.1
ppmw NH ₃ in lean amine	85.4	57.4	21.7	42.9
% CO ₂ pickup in Absorber	80.8	80.8	80.7	80.7
NH ₃ in Acid Gas, %vol (wet)	0.77	0.46	0.10	0.17

Reflux Purging Conclusions

- Effective at removing NH₃ from the amine system
- Minimizes NH₃ slip into acid gas
- Reduces corrosion in the reflux system
- Fresh water make-up into the reflux amplifies benefits

Regenerator Profile (Unpurged)

- NH₃ accumulation is not constrained to the reflux wash section.
- Accumulates well below the feed tray
- Incremental heat of reaction → higher reboiler duty or....

막 Slu Ter

Slumped Regeneration Temperatures With NH₃

- At constant reboiler duty, more energy goes into boiling and condensing NH₃ and trapped H₂S
 - "Foaming" is an urban legend as vapor traffic is reduced.

Measured NH₃ in Lean Amines

NH₃ Levels in Unpurged Amine Units

Conclusions

- Very little NH₃ contamination can lead to Regenerator reflux corrosion concerns and purging needs
- Ammonia slip to product streams can be expected and minimized by purging reflux
- Model provides some guidance on relationships between NH₃ levels in unit feed, reflux, and acid gas
 - Results depend upon unit configuration and should be viewed on a case-by-case basis

Acknowledgments

- Simon Weiland
- Scott Alvis & David Edward
- Al Keller