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Chapter 1

DrillingMuds

According to the American Petroleum Institute (API), a drilling fluid is defined
as a circulating fluid, used in rotary drilling to perform any or all of the various
functions required in drilling operations.

Drilling fluids are mixtures of natural and synthetic chemical compounds
used to cool and lubricate the drill bit, clean the hole bottom, carry cuttings to
the surface, control formation pressures, and improve the function of the drill
string and tools in the hole. They are divided into two general types: water-
based drilling muds (WBMs) and oil-based drilling muds (OBMs). The type
of fluid base that is used depends on drilling and formation needs, as well as
the requirements for disposing of the fluid after it is no longer needed. Drilling
muds are a special class of drilling fluids used to drill most deep wells. The term
mud is used because of the thick consistency of the formulation.

Drilling fluids serve several fundamental functions (Brazzel, 2009;
Melbouci and Sau, 2008):

l Control of downhole formation pressures,
l Overcoming the fluid pressure of the formation,
l Avoiding damage to the producing formation,
l Removal of cuttings generated by the drill bit from the borehole, and
l Cooling and lubricating the drill bit.

In order to perform their fundamental functions, drilling fluids should pos-
sess several desirable characteristics, which greatly enhance the efficiency of
the drilling operation.

These include desired rheological properties (plastic viscosity, yield value,
low-end rheology, and gel strengths), fluid loss prevention, stability under
various temperature and pressure operating conditions, stability against con-
taminating fluids, such as salt water, calcium sulfate, cement, and potassium
contaminated fluids (Melbouci and Sau, 2008).

The drilling fluid should also have penetration enhancement characteris-
tics that wet the drill string and keep the cutting surfaces of the drill bit clean
(whether it is a roller cone or other configuration).
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Wetting ability is at least in part a function of the surface tension of the fluid.
The fluid should also have a high degree of lubricity and to minimize friction
between the drill string and the wall of the borehole to minimize of differential
sticking. In this situation, the hydrostatic pressure of the drilling fluid column
must be sufficiently higher than the formation pressure so that the drill string is
forced against the wall of the borehole and stuck.

It should also prevent the solids of the formation, primarily shales and clays,
from swelling, so reducing the incidence of drill sticking, undergauge holes etc.

CLASSIFICATION OF MUDS

The classification of drilling muds is based on their fluid phase alkalinity, dis-
persion, and the type of chemicals used in their formulation. The classification
according to (Lyons, 1996) is reproduced in Table 1.1.

Drilling muds are usually classified as either WBMs or OBMs, depending
upon the continuous phase of the mud. However, WBMs may contain oil and
OBMs may contain water (Guichard et al., 2008).

OBMs generally use hydrocarbon oil as the main liquid component, with
other materials such as clays or colloidal asphalts being added to provide
the desired viscosity together with emulsifiers, polymers, and other additives
including weighting agents. Water may also be present, but in an amount not
usually greater than 50% by volume of the entire composition. If more than
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TABLE 1.1 Classification of Drilling Muds

Class Description

Fresh water mudsd pH from 7–9.5, include spud muds, bentonite-containing
muds, phosphate-containing muds, organic thinned muds
(red muds, lignite muds, lignosulfonate muds), organic colloid
muds

Inhibited mudsd Water-based drilling muds that repress hydration of clays (lime
muds, gypsum muds, sea water muds, saturated salt water
muds)

Low-solids mudsn Contain less than 3–6% of solids. Most contain an organic
polymer

Emulsions Oil in water and water in oil (reversed phase, with more than
5% water)

OBMs Contain less than 5% water; mixture of diesel fuel and asphalt

d) Dispersed systems
n) Nondispersed systems
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about 5% of water is present, the mud is often referred to as an invert emulsion,
i.e., a water-in-oil emulsion.

WBMs conventionally contain viscosifiers, fluid loss control agents, weight-
ing agents, lubricants, emulsifiers, corrosion inhibitors, salts, and pH control
agents. Water makes up the continuous phase of the mud, and is usually present
as at least 50 volume percent of the entire composition. Oil is also usually
present in small amounts, but will typically not exceed the amount of the water,
so that the mud will retain its character as a water-continuous-phase material.

Potassium muds are the most widely accepted water mud system for drilling
water sensitive shales. K+ ions attach to clay surfaces and lend stability to the
shale that is exposed to drilling fluids by the bit. The ions also help to hold
the cuttings together, minimizing its dispersion into finer particles. Potassium
chloride, KCl is the most widely used source of potassium, with others
being potassium acetate, potassium carbonate, potassium lignite, potassium
hydroxide, and potassium salt of partially hydrolyzed polyacrylamide (PHPA).

For rheological control, different types of polymers are used, such as xan-
than gum and PHPA. For fluid loss control, mixtures of starch and polyanionic
cellulose (PAC) are often used. Carboxymethyl starch, hydroxypropyl starch,
carboxymethyl cellulose (CMC), and sodium polyacrylate are also used. PHPA
is widely used for shale encapsulation.

Salt water muds contain varying amounts of dissolved sodium chloride
(NaCl) as a major component. Undissolved salt may also be present in satu-
rated salt muds to increase density or to act as a bridging agent over permeable
zones. Starch and its derivatives for fluid loss control, and xanthan gums for
hole cleaning are among the few additives that are effective for salt water muds.

Sea water mud is a WBM designed for offshore drilling whose make-up
water is taken from the ocean. Sea water has relatively low salinity, contain-
ing about 3–4% of NaCl, but has a high hardness because of the presence
of Mg+2 and Ca+2 ions. This hardness is removed from sea water by adding
NaOH (sodium hydroxide), which precipitates Mg+2 as Mg(OH)2 (magnesium
hydroxide) and by adding Na2CO3 (sodium carbonate), which removes Ca+2 as
CaCO3 (calcium carbonate). The additives are the same as those used in fresh
water muds (Guichard et al., 2008), namely

l Bentonite clay,
l Lignosulfonate,
l Lignite,
l CMC, or
l PAC, and
l Caustic soda.

Xanthan gum may be used in place of bentonite. Silicate-mud is a type of
shale-inhibitive water mud that contains sodium or potassium silicate as the
inhibitive component. If this material is used, then a high pH is a necessary char-
acteristic of silicate muds in order to control the amount and type of polysilicates
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that are formed. This is achieved by the addition of NaOH (or KOH) and the
appropriate silicate solution. Silicate anions and colloidal silica gel combine to
stabilize the wellbore by sealing microfractures, forming a silica layer on shales
and possibly acting as an osmotic membrane, which can produce in-gauge holes
through troublesome shale sections that otherwise might require an oil mud.

Lime mud is a type of WBM that is saturated with lime (Ca(OH)2), and
has excess, undissolved lime solids maintained in reserve. Fluid loss additives
include starch, hydroxypropyl starch, CMC, or PAC (Guichard et al., 2008).

Dispersed Noninhibited Systems

Drilling fluids used in the upper hole sections are referred to as dispersed
noninhibited systems. They are formulated from fresh water and may contain
bentonite. The classification of bentonite-based muds is shown in Table 1.2.
The flow properties are controlled by a flocculant or thinner, and the fluid loss
is controlled with bentonite and CMC.

Phosphate-treated Muds

Phosphates are only effective in small concentrations, and the mud tempera-
ture must be less than 55◦C. The salt contamination must be less than 500 ppm
sodium chloride. The concentration of calcium ions should be kept as low as
possible. The pH should be between 8 and 9.5. Some phosphates may decrease
the pH, so more NaOH must be added.

Lignite Muds

Lignite muds are temperature resistant up to 230◦C. Lignite can control vis-
cosity, gel strength, and fluid loss. The total hardness must be lower than
20 ppm.
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TABLE 1.2 Classification of Bentonite Fluid Systems

Solid–solid
Interactions Inhibition Level Drilling Fluid Type

Dispersed Noninhibited Fresh water clay NaCl <1%,
CaCl2, < 120 ppm

Dispersed Inhibited Saline fluids, Na+, Ca2+ salt, saturated
salt, gypsum, lime)

Nondispersed Noninhibited Fresh water low-solids muds

Nondispersed Inhibited Salt and polymer fluids
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Quebracho Muds

Quebracho is a natural product extracted from the heartwood of the Schinopsis
trees that grow in Argentina and Paraguay. It is a well-characterized polypheno-
lic, readily extracted from the wood by treatment with hot water, and is widely
used as a tanning agent. It is also used as a mineral dressing, as a dispersant
in drilling muds, and in wood glues. Quebracho is commercially available as
a crude hot water extract, either in lump, ground, or spray-dried form, or as a
bisulfite-treated, spray-dried product that is completely soluble in cold water. It
is also available in a bleached form, which can be used in applications where the
dark color of unbleached quebracho is undesirable (Shuey and Custer, 1995).

Quebracho-treated fresh water muds were originally used at shallow depths.
It is also referred to as red mud because of the deep red color. Quebracho acts as
a thinner. Polyphosphates are also added when Quebracho is used. Quebracho
is active at low concentrations and consists of tannates.

Lignosulfonate Muds

Lignosulfonate fresh water muds contain ferrochrome lignosulfonate for viscos-
ity and gel strength control. These muds are resistant to most types of drilling
contamination because of the thinning efficiency of the lignosulfonate in the
presence of large amounts of salt and at extreme hardnesses.

Lime Muds

Lime muds contain caustic soda, an organic thinner, hydrated lime, and a col-
loid for filtrate loss. From this a pH of 11.8 can result, with calcium ions at a
concentration of 3–20 ppm in the filtrate. Lime muds exhibit low viscosity, low
gel strength, and good suspension of weighting agents. They can carry a larger
concentration of clay solids at lower viscosities than other types of mud. At high
temperatures, lime muds present a danger of gelation.

Sea Water Muds

The average composition of sea water is shown in Table 1.3. Most of the
hardness in sea water is caused by magnesium. Sea water muds have sodium
chloride concentrations above 10,000 ppm. They also contain bentonite, thinner
(lignosulfonate or lignosulfonate with lignite), and an organic filtration control
agent.

Nondispersed Noninhibited Systems

In nondispersed systems no special agents are added to deflocculate the solids
in the fluid. The main advantages of these systems are the higher viscosities and
the higher yield point-to-plastics viscosity ratio. These alterated flow properties
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TABLE 1.3 Composition of Sea Water

Component Concentration/[ppm]

Sodium 10,500

Potassium 400

Magnesium 300

Calcium 400

Chloride 19,000

Sulfate 3,000

provide a better cleaning of the borehole, allow a lower annular circulating rate,
and minimize the washout of the borehole.

Low-solids Fresh Water Muds

Clear fresh water is the best drilling fluid in terms of penetration rate. There-
fore, it is desirable to achieve a maximal drilling rate using a minimal amount
of solid additives. Originally, low-solids mud formulations were used in hard
formations, but they now also tend to be used in other formations. Several types
of flocculants are used to promote the settling of drilled solids by flocculation.

Variable Density Fluids

Variable density fluids are those that have a density which varies as a function of
the pressure in the subterranean formation. Such a fluid comprises a base fluid
and a proportion of elastic particles.

These elastic particles allow the density of the variable density fluid to vary
as a function of pressure. For instance, as the elastic particles encounter higher
downhole pressures, they become compressed, thereby decreasing the volume
and in turn increasing the density of the fluid that contains them. When the
elastic particles are fully compressed, the density increases considerably.

The increase in volume of the elastic particles in turn reduces the overall
density of the variable density drilling fluid. The resulting change in density
may be sufficient to permit the return of the variable density fluid through the
riser to the surface without the need for any additional pumps or subsurface
additives (Ravi et al., 2009).

The elastic particles are usually either a copolymer of styrene and divinyl-
benzene, a copolymer of styrene and acrylonitrile, or a terpolymer of styrene,
vinylidene chloride, and acrylonitrile (Ravi et al., 2009).
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Gas-based Muds

Although natural gas (methane) exhaust or other combustion gases can be used,
air is the most common gas to be used in such drilling fluids. It is used to produce
so-called foam muds, in which air bubbles are surrounded by a film of water
containing a foam-stabilizing substance or film-strengthening material, such as
an organic polymer or bentonite.

This type of mud is not recirculated and is often used for reduced-pressure
drilling to improve the hole stability in caving formations. However, this type
of mud has some limitations, since the drilling water produces wet formations,
and it has a limited salt tolerance.

Drill-in Fluids

After drilling a well to the total depth, it is a normal practice to replace the
drilling mud with a completion fluid. This fluid is a clean, solids-free, or acid
soluble, non-damaging formulation, intended to minimize reductions in perme-
ability of the producing zone. Prior to producing from the formation, it is usually
necessary to clean up what is left by the original mud and the completion fluid,
by breaking and degrading the filter cake with an oxidizer, enzyme, or an acid
solution.

Nowadays, many wells exploit the pay-zone formations for long distances
horizontally. It is no longer practical in these wells to drill the pay-zone with
conventional, solids-laden muds, as the extended clean-up process afterwards is
much more difficult. Consequently, the current generation of drill-in fluids was
developed.

Drill-in fluids are completion fluids, but they also act as drilling muds. As
the pay-zone is penetrated horizontally, these fluids must provide the multifunc-
tional requirements of drilling fluids in addition to the non-damaging attributes
of completion fluids. In practice, the normal drilling mud is replaced with a
drill-in fluid just before the pay-zone is penetrated, and used until the end of the
operation.

MUD COMPOSITIONS

Commercial products are listed in the literature. The additional components
include bactericides, corrosion inhibitors, defoamers, emulsifiers, fluid loss and
viscosity control agents, and shale control additives (Anonymous, 1991a,b,c,
1992, 1996).

Inhibitive Water-based Muds

Minimizing the environmental impact of the drilling process is a highly
important part of drilling operations, in order to comply with environmental
regulations which have become stricter throughout the world. In fact, this is a
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mandatory requirement for the North Sea sector. The drilling fluids industry has
made significant progress in developing new fluids and ancillary additives to
fulfill the increasing technical demands for drilling oil wells. Additives now
have very little or no adverse effects on the environment or on drilling
economics.

New drilling fluid technologies have been developed to allow the continua-
tion of oil-based performance with regard to formation damage, lubricity, and
wellbore stability aspects and thus penetration rates. These aspects were greatly
improved by incorporating polyols or silicates as shale inhibitors in the fluid
systems.

Polyol-based fluids contain a glycol or glycerol as a shale inhibitor, com-
monly used in conjunction with conventional anionic and cationic fluids to
provide additional inhibition of swelling and dispersing of shales. They also
provide some lubrication properties.

Sodium or potassium silicates are known to provide levels of shale inhi-
bition comparable to that of OBMs. This type of fluid is characterized by a
high pH (>12), for optimum stability of the mud system. The inhibition prop-
erties of such fluids are due to the precipitation or gelation of silicates that
occurs on contact with divalent ions and lower pH in the formulation, pro-
viding an effective water barrier that prevents hydration and dispersion of the
shales.

Water-based Muds

These muds have water as the continuous phase, which may contain several
dissolved substances such as alkalies, salts and surfactants, organic polymers in
colloidal state, droplets of emulsified oil, and various insoluble substances, such
as barite, clay, and cuttings in suspension.

The mud composition that is selected for use often depends on the dissolved
substances present in the most economically available make-up water, or on the
soluble or dispersive materials in the formations to be drilled. Several mud types
or systems are recognized and described in the literature such as:

l Spud muds,
l Dispersed/deflocculated muds,
l Lime muds,
l Gypsum muds,
l Salt water muds,
l Nondispersed polymer muds,
l Inhibitive potassium muds,
l Cationic muds, and
l Mixed metal hydroxide muds.

Despite their environmental acceptability, conventional WBMs exhibit
major deficiencies relative to OBMs/pseudo oil-based drilling muds (POBMs)
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TABLE 1.4 Water-based Drilling Muds

Compound References

Glycol-based Lee et al. (1997)

Alkali silicates Mullen and Gabrysch (2001),
Urquhart (1997)

Polyacrylamide, carboxymethyl cellulose Kotelnikov et al. (1996)

Carboxymethyl cellulose, zinc oxide Gajdarov and Tankibaev (1996)

Acrylamide copolymer, polypropylene glycol (PPG)
(water-based mud)

Patel and Muller (1996)

because of their relatively poor shale inhibition, lubricity, and thermal stability
characteristics. To overcome these deficiencies, specific additives may be
added to the WBM compositions to bring their properties close to that of
OBMs/POBMs while minimizing their environmental impact.

Components of WBMs are shown in Table 1.4. Various methods for the
modification of lignosulfonates have been described in the literature, for exam-
ple, condensation with formaldehyde (Martyanova et al., 1997) or modification
with iron salts (Ibragimov et al., 1998). It has been found that chromium-
modified lignosulfonates, as well as mixed metal lignosulfonates of chromium
and iron, are highly effective as dispersants. They are therefore useful for con-
trolling the viscosity of drilling fluids and reducing their yield point and gel
strength. Because chromium is potentially toxic, its release into the natural
environment is continuously being reviewed by various government agencies
around the world.

Therefore, less toxic substitutes are desirable. These can be prepared by
combining tin or cerium sulfate with an aqueous solution of calcium lignosul-
fonate, thereby producing a solution of tin or cerium sulfonate and a calcium
sulfate precipitate (Patel, 1994b).

Compositions with Improved Thermal Stability
To avoid the problems associated with viscosity reduction in polymer-based
aqueous fluids, formates, such as potassium formate and sodium formate, are
commonly added to enhance their thermal stability, but this is very expensive,
and thermal stabilities of polymer-based aqueous fluids can be improved by
other means (Maresh, 2009).

The stability of a wellbore treatment fluid may be maintained up to temper-
atures of 135–160◦C (275–325◦F) by introducing various polysaccharides into
the fluid. The apparent viscosities of some drilling fluids containing xanthan
gum and polyacrylamide (PAM) before and after rolling at 120◦C are shown in
Table 1.5.
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TABLE 1.5 Apparent Viscosity Before and After Rolling
(Maresh, 2009)

Before After
Composition η/[cP] η/[cP]

Brine/XC 13 3

Brin/PA 8.5 6

Brine/Filtercheck 4 4

Brine/FLC/XC 16 10.5

Brine/FLC/PA 14.6 9

Brine/XC/CLAYSEAL 12.5 3

XC/PA 30 28.5

XC/PA/FLC 38.5 16.5

XC/PA/FLC/CLAYSEAL 34 28

XC/PA/FLC/CLAYSEAL/Barite 38.5 38.5
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FIGURE 1.1 Quaternized etherified polyvinyl alcohol and quaternized polyacrylamide (Patel
et al., 2009).

Shale Encapsulator
A shale encapsulator is added to a WBM in order to reduce the swelling of the
subterranean formation in the presence of water. It must be at least partially
soluble in the aqueous continuous phase in order to be effective.

A conventional encapsulator is a quaternary PAM, preferably a quater-
nized polyvinyl alcohol. Useful anions include halogen, sulfate, nitrate, and
formate (Patel et al., 2009).

By varying the molecular weight and the degree of amination, a wide variety
of products can be produced. It is possible to create shale encapsulators for use
in low salinity conditions, including fresh water (Patel et al., 2009). The repeat-
ing units of quaternized, etherified polyvinyl alcohol and quaternized PAM are
shown in Figure 1.1.
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Membrane Formation
In order to increase wellbore stability, formulations for water-based drilling
fluids can be provided that form a semi-permeable osmotic membrane over a
specific shale formation (Schlemmer, 2007). This membrane allows the com-
paratively free movement of water through the shale, but significantly restricts
the movement of ions across the membrane and thus into the shale.

Membrane formation involves the application of two reactants to form a
relatively insoluble Schiff base in situ, which deposits the shale as a polymer
film. This Schiff base coats the clay surfaces as a polymer membrane.

The first reactant is a soluble monomer, oligomer, or polymer with ketone,
aldehyde, aldol functionalities, or precursors to those. Examples are carbohy-
drates, such as dextrin and linear or branched starch. The second reactant is
a primary amine. These compounds react via a condensation reaction to form
an insoluble crosslinked polymer. The formation of a Schiff base is shown in
Figure 1.2.

Figure 1.2 shows the reaction of a dextrine with a diamine, but other pri-
mary amines and polyamines will of course react in the same way. Long chain
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FIGURE 1.2 Formation of a Schiff base (Schlemmer, 2007).
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amines, diamines, or polyamines with a relatively low amine ratio may require
pH adjustment, using materials such as sodium hydroxide, potassium hydrox-
ide, sodium carbonate, potassium carbonate, or calcium hydroxide (Schlemmer,
2007). The Schiff base formed in this way must be essentially insoluble in the
carrier brine in order to deposit a sealing membrane on the shale during the
drilling of a well.

By carefully selecting the primary polymer and the crosslinking amine,
their relative concentrations, and the pH, the required degree of crosslinking,
polymerization, and precipitation of components occurs, effectively forming an
osmotically effective membrane on or within the face of the exposed rock.

Oil-based Drilling Muds

These materials have oil as their continuous phase, usually diesel oil, mineral
oil or low toxicity mineral oil. Because some water will always be present, the
OBM must contain water-emulsifying agents. Various thickening and suspend-
ing agents as well as barite are added. The emulsified water may contain alkalies
and salts. If water is purposely added (for economical reasons), the OBM is
called an invert emulsion mud.

Due to the character of their continuous phase, OBMs provide unequaled
performance attributes with respect to the rate of penetration, shale inhibition,
wellbore stability, high lubricity, high thermal stability, and high salt tolerance.
However, they are subjected to strict environmental regulation regarding their
discharge and recycling.

OBMs are now being replaced by synthetic muds. Diesel oil is harmful to
the environment, particularly the marine environment in offshore applications.
The use of palm oil derivatives could be considered as a harmless alternative
(Yassin and Kamis, 1990), or hydrated castor oil can be used as a viscosity
promoter instead of organophilic quaternized clays (Mueller et al., 1991).

An OBM can be made more viscous with maleated ethylene-propylene
elastomers (Jones and Acker, 1999). The elastomers are ethylene-propylene
copolymers or ethylene-propylene-diene terpolymers. These compounds are far
more effective oil mud viscosifiers than the organophilic clays orginally used.
However, specific organophilic clays can provide a drilling fluid composition
that is less sensitive to high temperatures (Dino and Thompson, 2001).

Poly-α-olefins (PAOs) are biodegradable and non-toxic to marine organi-
sms. They also meet viscosity and pour point specifications for OBM formu-
lations (Ashjian et al., 1995). The hydrogenated dimer of 1-decene (Mercer
and Nesbit, 1992) can be used instead of conventional organic fluids, as can
n-1-octene (Lin, 1996).

Polyethercyclicpolyols
Polyethercyclicpolyols possess molecular properties and characteristics that per-
mit the preparation of enhanced drilling fluids, which inhibit the formation of
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gas hydrates, prevent shale dispersion, and reduce the swelling of the formation
to enhance wellbore stability, reduce fluid loss, and reduce filter cake thickness.

Drilling muds that incorporate these compounds are substitutes for OBMs
in many applications (Blytas and Frank, 1995; Blytas et al., 1992; Blytas et al.,
1992; Zuzich and Blytas, 1994; Zuzich et al., 1995). Polyethercyclicpolyols are
prepared by thermally condensing a polyol, for example glycerol, to oligomers
and cyclic ethers.

Emulsifier for Deep Drilling
Two major problems are encountered when using OBMs for drilling very deep
wells (Dalmazzone, 2007). The first is a problem with the stability of the emul-
sions at elevated temperatures. The emulsion must be stable up to temperatures
of 200◦C. If the emulsion coalesces, the fluid loses its rheological properties.

The second problem is their environmental impact. The emulsification
agents must not only be effective, but also as non-toxic as possible.

Fatty acid amides consisting of N-alkylated polyether chains are used as
emulsifiers. For those the term ‘polyalkoxylated superamides’ has been coined
(Le Helloco et al., 2004). As a cosurfactant, tall oil fatty acids or their salts can
be used.

Biodegradable Composition
Some oil-based drilling fluids are biodegradable. The main oil phase component
of these materials is a mixture of methyl esters from biodegradable fatty acids.
A typical formulation of a biodegradable drilling fluid is shown in Table 1.6.

Electric Conductive Nonaqueous Mud
A wellbore fluid has been developed that has a nonaqueous continuous liq-
uid phase and exhibits an electrical conductivity that is a factor of 104 to 107

greater than a conventional invert emulsion. 0.2–10% by volume of carbon
black particles and emulsifying surfactants are used as additives. Information
from electrical logging tools, including measurements while drilling, can be
obtained (Sawdon et al., 2000).

Water Removal
Water can be removed from OBMs by the action of magnesium sulfate (Smith
and Jeanson, 2001).

Synthetic Muds

Synthetic muds are expensive. Two factors influence the direct cost, namely the
costs per barrel and mud losses. Synthetic muds are the technical equivalent of
OBMs when drilling intermediate hole sections. They are technically superior
to all water-based systems when drilling reactive shales in directional wells.
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TABLE 1.6 Biodegradable Drilling Fluid (Goncalves et al., 2007)

Compound Amount/[%] Function

Soybean methylate 55 to 70 Oil component

D -Limonene 1 to 5 Pour point depressant

2,6-Di-tert -butyl-p-cresol 0.1 to 0.5 Antioxidant

Hydrogenated castor oil 0.3 to 1 Oil component

Fatty acid salts 3 to 6 Puffer

Magnesium oxide 1 to 3 In situ soap former

NaCl Brine 26 to 30 Aqueous component

Organophilic clay 0.5 to 1 Viscosifier

Succinimide copolymer 0.1 to 0.5 Fluid loss agent

Sodium polyacrylate 0.1 to 0.5 Fluid loss agent

Citric acid 0.1 to 1.5 Puffer

Barium sulfate 0.1 to 25 Weighting agent

With efficient solids-control equipment, optimized drilling, and good house-
keeping practices, the cost of the synthetic mud can be brought to a level that is
comparable to OBM (Munro et al., 1993).

POBMs or synthetic oil-based drilling muds are made on the same principle
as OBMs. They have been developed to maintain the performance characteris-
tics of OBMs while reducing their environmental impact. The objective behind
the design of these drilling fluids is to exchange the diesel oil or mineral oil
base with an organic fluid that has a lower environmental impact. The organic
fluids used are esters, polyolefins, acetal, ether, and linear alkyl benzenes. As
with OBMs, POBMs may contain various ingredients, such as thickening and
suspending agents and emulsifying agents as well as weighting agents.

POBMs were developed to maintain the technical performance characteris-
tics of OBMs and reduce their environmental impact. They are, however, not as
stable as OBMs depending upon the continuous phase present. From an environ-
mental perspective, legislation is becoming as strict for POBMs as for OBMs.
The mud selection process is based on the mud’s technical performance and
environmental and financial impact.

Skeletally isomerized linear olefins exhibited a better high-temperature sta-
bility in comparison to a drilling fluid prepared from a conventional PAO. Fluid
loss properties are good, even in the absence of fluid loss additives (Gee et al.,
1992, 1998, 2000; Williamson et al., 1995). Although normal α-olefins are not
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generally useful, mixtures of mostly linear olefins are minimally toxic and are
highly effective as the continuous phase of drilling fluids (Gee et al., 1995,
1992).

Acetals as mineral oil substitutes exhibit good biodegradability and are less
toxic than mineral oils (Hille et al., 1992, 1998). Acrylic acid (AA) salts are
formed by the neutralization reaction of AA in aqueous solution (Shimomura
et al., 1990).

Alginates are hydrocolloids, which are extracted from brown marine
microalgae. Water-soluble alginates are prepared as highly concentrated,
pumpable suspensions in mixtures of propylene glycol and water by using
hydroxypropylated guar gum in combination with carboxymethylated cellulose,
which is used as a suspending agent (Kehoe and Joyce, 1993).

Inverted Emulsion Drilling Muds

Inverted emulsion muds are used in 10–20% of all drilling jobs. Historically,
first of all crude oils, then diesel oils and mineral oils were used to formulate
invert drilling fluids. Considerable environmental damage may occur when the
mud gets into the sea. Drilling sludge and the heavy mud sink to the seabed
and partly flow with the tides and sea currents to the coasts. All of these
hydrocarbons contain no oxygen and are not readily biodegraded (Hille et al.,
1998).

Because of problems of toxicity and persistence, alternative drilling oils
have been developed. Examples of such oils are fatty acid esters and branched
chain synthetic hydrocarbons such as PAOs. Fatty acid ester-based oils have
excellent environmental properties, but drilling fluids made with these esters
tend to have lower densities and are prone to hydrolytic instability.

PAO-based drilling fluids can be formulated to high densities with good
hydrolytic stability and low toxicity. They are, however, somewhat less biode-
gradable than esters and they are expensive. The fully weighted, high-density
fluids tend to be too viscous (Lin, 1996).

Esters
Esters of C6 to C11 monocarboxylic acids (Müller et al., 1990; Mueller
et al., 1990a,b, 1994), acid-methyl esters (Mueller et al., 1990a), and poly-
carboxylic acid esters (Mueller et al., 1991), as well as oleophilic monomeric
and oligomeric diesters (Mueller et al., 1991), have all been proposed as basic
materials for inverted emulsion muds. Natural oils are triglyceride ester oils
(Wilkinson et al., 1995) and are similar to synthetic esters. Diesters also have
been proposed (Mueller et al., 1991, 1992, 1993, 1995; Muller et al., 1993).

Acetals
Acetals and oleophilic alcohols or oleophilic esters are suitable for the prepa-
ration of inverted emulsion drilling muds and emulsion drilling muds. They
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may replace the base oils, diesel oil, purified diesel oil, white oil, olefins,
and alkyl benzenes (Hille et al., 1996, 1998). Examples are isobutyraldehyde,
di-2-ethylhexyl acetal, dihexyl formal. Also mixtures with coconut alcohol,
soya oil, and α-methyldecanol are suitable. Some aldehydes are shown in
Figure 1.3.

Inverted emulsion muds are more useful in stable, water sensitive formations
and in inclined boreholes. They are stable up to very high temperatures and pro-
vide excellent corrosion protection. Their disadvantages are their higher price,
the greater risk if gas reservoirs are bored through, the more difficult handling
for the team at the tower, and their greater environmental problems.

The high setting point of linear alcohols and the poor biodegradability of
branched alcohols limit their use as an environment-friendly mineral oil substi-
tute. Higher alcohols, which are slightly water-soluble, are eliminated for use in
offshore muds because of their high toxicity to fish.

Esters and acetals can be degraded anaerobically on the seabed. This pos-
sibility minimizes the environmentally damaging effect on the seabed. When
such products are used, rapid recovery of the ecology of the seabed takes place
after the end of drilling. Acetals, which have a relatively low viscosity and in
particular a relatively low setting point, can be prepared by combining various
aldehydes and alcohols (Hille et al., 1998; Young and Young, 1994).

Anti-settling Properties
Ethylene-AA copolymer, neutralized with amines such as triethanol amine or
N-methyl diethanol amine, enhances anti-settling properties (McNally et al.,
1999; Santhanam and MacNally, 2001).

Glycosides
If glycosides are used in the internal phase, then much of the concern over the
ionic character of the internal phase is not necessary. If water is limited in the
system, then the hydration of the shales is greatly reduced.

Cinnamaldehyde 2-Furaldehyde

CH CH C
O

H O CH2 C
O

H

Isobutyraldehyde

CHH3C

CH3

CH2 C
O

H

FIGURE 1.3 Aldehydes.
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The reduced water activity of the internal phase of the mud and the improved
efficiency of the shale is an osmotic barrier if the glycoside interacts directly
with the shale. This helps to lower the water content of the shale, thus increasing
rock strength, lowering effective mean stress, and stabilizing the wellbore (Hale
and Loftin, 1996).

Methyl glucosides also could find applications in water-based drilling flu-
ids and have the potential to replace OBMs (Headley et al., 1995). The use of
such a drilling fluid could reduce the need for the disposal of oil-contaminated
drilling cuttings, minimize health and safety concerns, and minimize adverse
environmental effects.

Miscellaneous
Other proposed base materials are listed in Table 1.7. Quaternary oleophilic
esters of alkylolamines and carboxylic acids improve the wettability of clay
(Ponsati et al., 1992, 1994). Nitrates and nitrites can replace calcium chloride in
inverted emulsion drilling muds (Fleming and Fleming, 1995).

Reversible Phase Inversion
Invert emulsion fluids, in which the emulsion can be readily and reversibly con-
verted from a water-in-oil type emulsion to an oil-in-water type emulsion, have
been developed. The essential ingredient is an amine-based surfactant, which

�

�

�

�

TABLE 1.7 Other Materials for Inverted Emulsion Drilling Fluids

Base material References

Ethers of monofunctional alcohols Mueller et al. (1990)

Branched didecyl ethers Godwin and Mathys (1993),
Godwin and Sollie (1993)

α-Sulfofatty acids Mueller et al. (1996)

Oleophilic alcohols Mueller et al. (1990b),
Muller et al. (1990)

Oleophilic amides Mueller et al. (1990c)

Hydrophobic side chain polyamide from
N,N -didodecylamine and sodium
polyacrylate or polyacrylic acid

Monfreux et al. (2000)

Polyether amine Wall et al. (1995)

Phosphate ester of a hydroxy polymer Brankling (1994)
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may be diethoxylated tallow amine, diethoxylated soya amine, or N-tallow-1,3-
diaminopropane (Patel, 2008).

The invert emulsion is admixed with an acid that can protonate the amine
surfactant. When sufficient quantities of the acid are present, the invert emulsion
is converted so that the oleaginous fluid becomes the discontinuous phase and
the non-oleaginous fluid becomes the continuous phase.

The phase inversion is reversible, so that on addition of a base capable
of deprotonating the protonated amine surfactant, a stable invert emulsion is
formed, where the oleaginous liquid becomes the continuous phase and the
non-oleaginous fluid become the discontinuous phase (Patel, 2008).

In other words, when the drilling fluid is converted into an oil-in-water type
emulsion, solids, now substantially water-wet, may now be separated from the
fluid, by gravity or mechanical means, for further processing or disposal. The
fluid may then be mixed with a base, which can deprotonate the protonated
amine surfactant, and so converts the oil-in-water type emulsion back to a water-
in-oil emulsion. The resulting water-in-oil emulsion may then be used as it is,
or may be reformulated into a drilling fluid that is suitable for use in another
well (Patel, 2008).

Foam Drilling

Drilling low-pressure reservoirs with nonconventional methods can use low-
density dispersed systems, such as foams, to achieve underbalanced conditions.
Selection of an adequate foam formulation, requires not only the reservoir
characteristics but also the foam properties to be taken into account.

Parameters such as stability of foam, and the interactions between rock-fluid
and drilling fluid-formation fluid are among the properties to consider when
designing the drilling fluid (Aguilar et al., 2000).

A composition with a specific pH, an ionic surfactant, and a polyampholytic
polymer whose charge depends on the pH, is circulated in a well. By varying the
pH, it is possible to destabilize the foam in such a way as to more easily break
it back at the surface, and potentially to recycle the foaming solution (Argillier
and Roche, 2000).

Chemically Enhanced Drilling

Chemically enhanced drilling offers substantial advantages over conventional
methods in carbonate reservoirs. Coiled tubing provides the perfect conduit for
chemical fluids that can accelerate the drilling process and provide stimulation
while drilling (Rae and Di Lullo, 2001). The chemical fluids are mainly acidic
in order to dissolve or disintegrate the carbonate rock.
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Supercritical Carbon Dioxide Drilling

The efficiency of drilling operations can be increased using a drilling fluid mate-
rial that exists as supercritical fluid, or a dense gas at temperature and pressure
conditions occurring in the drill site, such as carbon dioxide.

A supercritical fluid exhibits physiochemical properties intermediate
between those of liquids and gases. Mass transfer is rapid with supercritical
fluids, and their dynamic viscosities are nearer to those of normal gaseous states.

In the vicinity of the critical point, the diffusion coefficient is more than
10 times that of a liquid. Carbon dioxide can be compressed readily to form a
liquid, and under typical borehole conditions, it is a supercritical fluid.

The viscosity of carbon dioxide at its critical point is only 0.02 cP. This
value increases with pressure to about 0.1 cP at 70 MPa (about 10,000 psi).
Because the diffusivity of carbon dioxide is so high, and the rock associated
with petroleum-containing formations is generally porous, the carbon dioxide is
effective in penetrating the formation.

Carbon dioxide therefore is often used to stimulate the production of oil
wells, because it tends to dissolve in the oil, reducing the oil viscosity while
providing a pressure gradient that drives the oil from the formation.

Carbon dioxide can be used to reduce mechanical drilling forces, to remove
cuttings, or to jet erode a substrate. Supercritical carbon dioxide is used with
coiled-tube drilling equipment. The very low viscosity of supercritical car-
bon dioxide provides efficient cooling of the drill head and efficient cuttings
removal.

Furthermore, the diffusivity of supercritical carbon dioxide within the pores
of petroleum formations is significantly higher than that of water, making jet
erosion much more effective than water. Supercritical carbon dioxide jets can
be used to assist mechanical drilling, for erosion drilling, or for scale removal.
Spent carbon dioxide can be vented to the atmosphere, collected for reuse, or
directed into the formation to aid in the recovery of petroleum (Kolle, 2002).

ADDITIVES

Thickeners

A variety of compounds that are useful as thickeners is shown in Table 1.8 and
the individual compounds are explained in detail in the following sections.

Polymers
Thickener polymers include polyurethanes (PUs), polyesters, PAMs, natural
polymers, and modified natural polymers (Doolan and Cody, 1995).
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TABLE 1.8 Thickeners

Compound References

A water-soluble copolymer of hydrophilic Meyer et al. (1999)
and hydrophobic monomers,
acrylamide (AAm)-acrylate of silane
or siloxane

Carboxymethyl cellulose, Lundan et al. (1993),
polyethylene glycol Lundan and Lahteenmaki (1996)

Combination of a cellulose ether with clay Rangus et al. (1993)

Amide-modified carboxyl-containing Batelaan and van der Horts
polysaccharide (1994)

Sodium aluminate and magnesium oxide Patel (1994a)

Thermally stable hydroxyethyl cellulose (HEC) Lukach and Zapico (1994)
30% ammonium or sodium thiosulfate and
20% HEC

AA copolymer and oxyalkylene Egraz et al. (1994)
with hydrophobic group

Copolymers acrylamide-acrylate and Waehner (1990)
vinylsulfonate–vinylamide

Cationic polygalactomannans and Yeh (1995)
anionic xanthan gum

Copolymer from vinyl urethanes and Wilkerson et al. (1995)
AA or alkyl acrylates

2-Nitroalkyl ether–modified starch Gotlieb (1996)

Polymer of glucuronic acid Courtois-Sambourg et al. (1993)

Ferrochrome lignosulfonate and Kotelnikov et al. (1992)
carboxymethyl cellulose

Cellulose nanofibrilsa Langlois (1998, 1999)

Quaternary alkyl amido ammonium salts Subramanian et al. (2001)

Chitosanb House and Cowan (2001)

a) Stable up to temperatures of about 180◦C
b) Solubilized in acidic solution

pH Responsive Thickeners

The viscosity of ionic polymers is dependent on their pH. In particular, pH respon-
sive thickeners can be prepared by copolymerization of acrylic or methacrylic
acid ethyl acrylate or other vinyl monomers and tristyrylpoly(ethyleneoxy)x

methyl acrylate. Such a copolymer provides a stable, aqueous, colloidal
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dispersion at a pH lower than 5.0, but becomes an effective thickener for aqueous
systems on adjustment to a pH of 5.5 to 10.5 or higher (Robinson, 1996, 1999).

Mixed Metal Hydroxides
By addition of mixed metal hydroxides, typical bentonite muds are transformed
to an extremely shear-thinning fluid (Lange and Plank, 1999). At rest, these
fluids exhibit a very high viscosity but are thinned to an almost water-like
consistency when shear stress is applied.

The shear thinning rheology of mixed metal hydroxides and bentonite fluids
is due to the formation of a three-dimensional, fragile network of mixed metal
hydroxides and bentonite.

The positively charged, mixed metal hydroxide particles attach themselves
to the surface of negatively charged bentonite platelets. Typically, magnesium
aluminum hydroxide salts are used as mixed metal hydroxides.

Mixed metal hydroxides demonstrate the following advantages in drilling
(Felixberger, 1996):

l High cuttings removal,
l Suspension of solids during shutdown,
l Lower pump resistance,
l Stabilization of the borehole,
l High drilling rates, and
l Protection of the producing formation.

Mixed metal hydroxide drilling muds have been used successfully in hori-
zontal wells; in tunneling under rivers, roads, and bays; for drilling in fluids;
for drilling large-diameter holes; with coiled tubing; and to ream out cemented
pipe.

Mixed metal hydroxides can be prepared from the corresponding chlorides
by treatment with ammonia (Burba and Strother, 1991). Experiments with var-
ious drilling fluids showed that the mixed metal hydroxides system, coupled
with propylene glycol (Deem et al., 1991), caused the least skin damage of the
drilling fluids tested.

Thermally activated mixed metal hydroxides, made from naturally occur-
ring minerals, especially hydrotalcites, may contain small or trace amounts of
metal impurities besides the magnesium and aluminum components, which are
particularly useful for activation (Keilhofer and Plank, 2000).

Mixed hydroxides of bivalent and trivalent metals with a three-dimensional
spaced-lattice structure of the garnet type (Ca3Al2[OH]12) have been described
(Burba et al., 1992; Mueller et al., 1997).

Lubricants

Bit lubricants are dealt with in detail in Chapter 4. During drilling, the drill string
may develop an unacceptable rotational torque or, in the worst case, become
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stuck. When this happens, the drill string cannot be raised, lowered, or rotated.
Common factors leading to this situation include:

l Cuttings or slough build-up in the borehole,
l An undergauge borehole,
l Irregular borehole development embedding a section of the drill pipe into

the drilling mud wall cake, or
l Unexpected differential formation pressure.

Differential pressure sticking occurs when the drill pipe becomes embedded
in the mud wall cake opposite a permeable zone.

The difference between the hydrostatic pressure in the drill pipe and the for-
mation pressure holds the pipe in place, resulting in a sticking pipe. Differential
sticking may be prevented, and a stuck drill bit may be freed by using an OBM,
or an oil-based, or water-based surfactant composition.

Such a composition reduces friction, permeates drilling mud wall cake,
destroys binding wall cake, and reduces the differential pressure. Unfortunately,
many such compositions are toxic to marine life.

Bacteria

Bacterial contamination of drilling fluids contributes to a number of problems.
Many of the muds contain sugar-based polymers in their formulation that pro-
vide an effective food source for bacterial populations. This can lead to direct
degradation of the mud.

In addition, the bacterial metabolism can generate deleterious products.
Most notable among these is hydrogen sulfide, which can lead to the decompo-
sition of mud polymers, the formation of problematic solids such as iron sulfide,
and corrosive action on drilling tubes and drilling hardware (Elphingstone and
Woodworth, 1999). Moreover, hydrogen sulfide is a toxic gas.

Many polymers are used in drilling fluids as fluid loss control agents or vis-
cosifiers. Because of the degradation of these polymers by bacteria in drilling
fluids, an increase in fluid loss can occur. All naturally occurring polymers
are capable of being degraded by bacterial action, but some are more suscep-
tible than others. One solution, besides using bactericides, is to replace the
starch with low viscosity PAC, polyanionic lignin, or other enzyme-resistant
polymer (Hodder et al., 1992).

Certain additives are protected from biodegradation while drilling deep
wells by quaternary ammonium salts (Rastegaev et al., 1999), which consi-
derably reduces consumption of the additives needed.

Bacterial control is important not only in drilling fluids, but also for other
oil and gas operations. The topic is treated more extensively in Chapter 5.
Some bactericides especially recommended for drilling fluids are summarized
in Table 1.9 and sketched out in Figure 1.4.
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TABLE 1.9 Bactericides for Drilling Fluids

Bactericide References

Bis[tetrakis(hydroxymethyl) Elphingstone and Woodworth
phosphonium] sulfatea (1999)

Dimethyl-tetrahydro- Karaseva et al. (1995)
thiadiazine-thione

2-Bromo-4-hydroxyacetophenoneb Oppong and King (1995)

Thiocyanomethylthio-benzothiazolec Oppong and Hollis (1995)

Dithiocarbamic acid, Austin and Morpeth (1992)

Hydroxamic acidc Austin and Morpeth (1992)

1,2-Benzoisothiazolin-3-one Morpeth and Greenhalgh (1990)

3-(3,4-Dichlorophenyl)- Morpeth and Greenhalgh (1990)
1,1-dimethylurea

Di-iodomethyl-4-methylphenyl Morpeth and Greenhalgh (1990)
sulfoned

Isothiazolinones Downey et al. (1995),
Hsu (1990, 1995), Morpeth (1993)

a) Absorbed on solid
b) Synergistically effective with organic acids
c) Synergistically effective with organic acids
d) Algicide

N

S

O

Pyrazol Isooxazol Isothiazol 1,2-Benzoisothiazolin-3-one

4,5-Dichloro-2-N-octyl-isothiazolin-3-one

N
N

O
N

S

S
N

OCl

Cl
(CH2)7CH3

N

FIGURE 1.4 Components for biozides.

Corrosion Inhibitors

Corrosion inhibitors are the subject of several topics in petroleum industries,
such as transport and completion. They are detailed in Chapter 6.
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Viscosity Control

Bentonites are highly colloidal and swell in water to form thixotropic gels.
This property results from their micaceous sheet structure. Because of these
viscosity-building characteristics, bentonites are used as viscosity enhancers or
builders in such areas as drilling muds and fluids, concrete and mortar additives,
foundry and molding sands, and compacting agents for gravel and sand, as well
as cosmetics. Most bentonites that are found in nature are in their sodium or
calcium form.

The performance of a calcium bentonite as a viscosity builder can often be
enhanced by conversion to the sodium form. Crude bentonite can be upgraded
to a range of solutions with unusually high aqueous viscosities (Bauer et al.,
1993). The crude material is sheared and dried. Sodium carbonate is then dry-
blended with the material and pulverized. The resulting bentonite clays are self-
suspending, self-swelling, and self-gelatinizing when mixed with water.

The modification of bentonite with alkylsilanes also improves their dispers-
ing properties (Kondo and Sawada, 1996). Incorporation of phosphonate-type
compounds in bentonites for drilling mud permits the removal of free calcium
ions in the form of soluble and stable complexes, and the preservation or restora-
tion of the initial fluidity of the mud (Michelson and Vattement, 1999). The
phosphonates also have dispersing and fluidizing effects on the mud.

Clay Stabilization

Selected clay stabilizers are shown in Table 1.10. Thermally treated carbohy-
drates are suitable as shale stabilizers (Sheu and Bland, 1992). They may be
formed by heating an alkaline solution of the carbohydrate, and the reaction
product may be reacted with a cationic base. The inversion of non-reducing sug-
ars may be first effected on selected carbohydrates, with the inversion catalyzing
the browning reaction.

Formation Damage

Polyacrylates are often added to drilling fluids to increase their viscosity and
limit formation damage. The filter cake is critical to preventing reservoir inva-
sion by mud filtrate. Polymer invasion of the reservoir has been shown to have
a great impact on permeability reduction (Audibert et al., 1999). The invasion
of filtrate and solids in drilling in fluid can cause serious reservoir damage.

Shale Stabilizer

Swelling due to shale hydration is one of the most important causes of borehole
instability. Three processes are known to contribute to shale instability (Bailey
et al., 1994):
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1. Movement of fluid from the wellbore into the shale,
2. Changes in stress and strain, which occur during the interaction of shale and

filtrate, and
3. Softening and erosion, caused by invasion of mud filtrate and consequent

chemical changes in the shale.

Adding a shale stabilizer to drilling fluids is an effective way to con-
trol clay swelling (Fu and Hu, 1997). A copolymer of AAm and acrylonitrile
has been found to be effective in this regard. Experimental results show that
the inhibitors are effective in inhibiting shale hydration swelling, especially
their quaternized product. 2-Hydroxybutyl ether and polyalkyl ether modified
polygalactomannans have been described as useful shale hydration inhibitors
(Dino, 1997).

�

�

�

�

TABLE 1.10 Clay Stabilizers for Drilling Fluids

Additive References

Modified poly-amino acida Bruton and McLaurine (1993)

Polyacrylamide Ballard et al. (1994)

Amphoteric acetates and glycinates Jarrett (1997a)

Capryloamphoglycinate Alonso-Debolt and Jarrett (1995)

Cocoamphodiacetate Alonso-Debolt and Jarrett (1995)

Disodium cocoamphodiacetate Alonso-Debolt and Jarrett (1995)

Lauroamphoacetate Alonso-Debolt and Jarrett (1995)

Sodium capryloamphohydroxypropyl
sulfonate

Alonso-Debolt and Jarrett (1995)

Sodium mixed C8 amphocarboxylate Alonso-Debolt and Jarrett (1995)

Alkylamphohydroxypropyl sulfonate Alonso-Debolt and Jarrett (1995)

Polyvinylpyrrolidone

Polyvinyl alcohol

Starches

Cellulosic material Patel et al. (1995)

Partially hydrolyzed polyacrylamide and
PPG, or a betaine

Patel et al. (1995)

Quaternized trihydroxyalkyl amine Patel et al. (1995)

Polyfunctional polyamine McGlothlin and Woodworth (1996)

a) Water sensitive smectite or illite shale formations
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TABLE 1.11 Surface Active Agents for Drilling Muds

Compound References

Alkylpolyglycosides Lecocumichel and Amalric (1995)

Amphoteric surfactants Dahanayake et al. (1996)

Acetal or ketal adduct hydroxy Felix (1996)
polyoxyalkylene ethera

Amphoteric anion ethoxy and Hatchman (1999)
propoxy units

Alkanolamine Hatchman (1999)

a) Controlling foam formation, drilling muds

A copolymer of styrene and maleic anhydride (MA) with alkylene oxide
based side chains is effective as a shale stabilizer (Smith and Balson, 2000), as
are a variety of polyoxyalkylene amines. It was found that polyoxypropylene-
diamine H2N−CH(CH3)CH2[−OCH2CH(CH3)]x−NH2 (Patel et al., 2001) is
the best, with x<15. Surfactants are used to change the interfacial properties.
Suitable surfactants are given in Table 1.11.

Fluid Loss Additives

Filtration control is an important property of a drilling fluid, particularly when
drilling through permeable formations, where the hydrostatic pressure exceeds
the formation pressure. It is important for a drilling fluid to quickly form a fil-
ter cake to effectively minimize fluid loss, but which also is thin and erodable
enough to allow product to flow into the wellbore during production (Jarrett and
Clapper, 2010). Fluid loss additives are detailed in Chapter 2. Here a few fluid
loss additives are summarized for quick reference.

There are a number of methods that have been proposed to help prevent the
loss of circulation fluid (Messenger, 1981). Some of these methods use fibrous,
flaky, or granular materials to plug the pores as the particulate material settles
out of the slurry.

Other methods use materials that interact in the fissures of the formation to
form a plug of increased strength. Lost circulation additives are summarized in
Table 1.12.

Water Swellable Polymers
Certain organic polymers absorb comparatively large quantities of water, for
example, alkali metal polyacrylate or crosslinked polyacrylates (Green, 2001).
Such water-absorbent polymers, insoluble in water and in hydrocarbons, can be
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TABLE 1.12 Lost Circulation Additives

Material References

Encapsulated lime Walker (1986)

Encapsulated oil-absorbent polymers Delhommer and Walker (1987a)

Hydrolyzed polyacrylonitrile Yakovlev and Konovalov (1987)

Divinylsulfone, crosslinked

Poly(galactomannan) gum Kohn (1988)

PU foam Glowka et al. (1989)

Partially hydrolyzed polyacrylamide
30% hydrolyzed, crosslinked with Cr3+

Sydansk (1990)

Compound References

Oat hulls House et al. (1991)

Rice products Burts Jr (1992, 1997)

Waste olive pulp Duhon (1998)

Nut cork Fuh et al. (1993), Rose (1996)

Pulp residue waste Gullett and Head (1993)

Petroleum coke Whitfill et al. (1990)

Shredded cellophane Burts Jr (2001)

injected into the well so that they encounter naturally occurring or added water
at the entrance to and within an opening in the formation. The resultant swelling
of the polymer forms a barrier to the continued passage of the circulation fluid
through that opening into the formation.

The hydrocarbon carrier fluid initially prevents water from contacting the
water-absorbent polymer until such water contact is desired. Once the hydrocar-
bon slug containing the polymer is properly placed at the lost circulation zone,
water is mixed with it so that the polymer will absorb the water and substantially
increase in size to close off the lost circulation zone (Bloys and Wilton, 1991;
Delhommer and Walker, 1987b; Walker, 1989). The situation is similar to an
oil-based cement. The opposite mechanism is used by a hydrocarbon-swellable
elastomer (Wood, 2001).

Anionic Association Polymer
Another type of lost circulation agent is a combination of an organic phos-
phate ester and an aluminum compound, for example, aluminum isopropoxide.
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The alkyl phosphate ester becomes crosslinked by the aluminum compound to
form an anionic association polymer, which serves as a gelling agent (Reid and
Grichuk, 1991), hence preventing fluid loss.

Fragile Gels
A fragile gel is one that can be easily disrupted or thinned under shear stress, etc,
but can quickly return to a gel when the stress is alleviated or removed, such as
when the circulation of the fluid is stopped. Fragile gels may be disrupted simply
by a pressure or a compression wave during drilling. They break instantaneously
when disturbed, turning from a gel back into a liquid with minimum pressure,
force, and time.

Metal crosslinked phosphate esters impart a fragile progressive gel structure
to a variety of oil and invert emulsion-based drilling fluids, both at neutral or
acidic pH.

The amount of phosphate ester and metal crosslinker that is used in a drilling
fluid depends on the oil type and the desired viscosity of the product. Gener-
ally, however, more phosphate ester and metal crosslinker is used for gelling
or enhancing the viscosity of the fluid for transport than is used for imparting
fragile progressive gel structure to the drilling fluid (Bell and Shumway, 2009).

Aphrons
Other lost-circulation additives can be present in an encapsulated form. The
encapsulation is then dissolved and the material swells to close fissures.
Microbubbles in a drilling fluid can be generated by certain surfactants, and
polymers known as aphrons are a different approach to reduce the fluid loss
(Ivan et al., 2001).

An aphron drilling fluid is similar to a conventional drilling fluid, but the
drilling fluid system is converted to an energized air-bubble mud system before
drilling (Kinchen et al., 2001).

Permanent Grouting
Lost circulation also can be suppressed by grouting permanently, either with
cement or with organic polymers that cure in situ (Allan and Kukacka, 1995;
Cowan and Hale, 1994).

Scavengers

Oxygen Scavengers
Oxygen corrosion is often underestimated, but studies have shown that the cor-
rosion can be limited when proper oxygen scavengers are used. Hydrazine leads
the group of chemicals that are used for oxygen removal. Because of its special
properties, it is used for corrosion control in heating systems and in drilling
operations, well workover, and cementing (Sikora, 1994).
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Hydrogen Sulfide Removal
It is sometimes necessary to remove hydrogen sulfide from a drilling mud. Tech-
niques using iron compounds that form sparingly soluble sulfides have been
developed, for example, the use of iron (II) oxalate (Sunde and Olsen, 2000)
and iron sulfate (Prokhorov et al., 1993), where the sulfur is precipitated out as
FeS. Alternatively, ferrous gluconate is an organic iron-chelating agent, stable
at pH levels as high as 11.5 (Davidson, 2001).

Zinc compounds have a high reactivity with regard to H2S and therefore
are suitable for the quantitative removal of even small amounts of hydrogen
sulfide (Wegner and Reichert, 1990). However, at high temperatures they may
negatively affect the rheology of drilling fluids.

Surfactants

Surfactant in Hydrocarbon Solvent
Methyl-diethyl-alkoxymethyl ammonium methyl sulfate has high foam extin-
guishing properties (Fabrichnaya et al., 1997).

Biodegradable Surfactants
Alkylpolyglucosides (APGs) are highly biodegradable surfactants (Nicora and
McGregor, 1998). The addition of APGs, even at very low concentrations, to
a polymer mud can drastically reduce fluid loss even at high temperatures.
Moreover, both fluid rheology and temperature resistance are improved.

Deflocculants and Dispersants
Deflocculants have a relatively low molecular weight. Complexes of tetravalent
zirconium with organic acids, such as citric, tartaric, malic, and lactic acids,
and a complex of aluminum and citric acid have been claimed to be active as
dispersants.

Polymers composed of sodium styrene sulfonate, MA, and a zwitterionic
functionalized MA (Grey, 1993; Peiffer et al., 1991, 1992, 1993) are also suit-
able. The dispersant is especially useful in dispersing bentonite suspensions
(Burrafato and Carminati, 1994).

Polymers with amine sulfide terminal moieties are synthesized by using
aminethiols as chain transfer agents in aqueous addition polymerization reac-
tions. The polymers are useful as mineral dispersants (McCallum and Weinstein,
1994).

Shale Stabilizing Surfactants
There are special shale stabilizing surfactants consisting of non-ionic alka-
nolamides (Jarrett, 1997b), for example, acetamide monoethanolamines and
diethanol amines. Acetone and ethanolamine are shown in Figure 1.5.
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Acetone
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Ethanolamine

OHH2N CH2 CH2

FIGURE 1.5 Acetone, ethanolamine.

Toxicity
Alkyl phenol ethoxylates are a class of surfactants that have been used widely in
the drilling fluid industry. The popularity of these surfactants is based on their
cost effectiveness, availability, and range of obtainable hydrophilic-lipophilic
balance values (Getliff and James, 1996).

However, studies have shown that alkyl phenol ethoxylates exhibit oestro-
genic effects and can cause sterility in some male aquatic species. This may
have subsequent human consequences, and such possibilities have led to their
use being banned in some countries, and agreements to phase out their use have
been drawn up. Alternatives are available, and in some cases they show an even
better technical performance.

Defoamers
Defoamers are covered in Chapter 22.

Hydrate Inhibitors

Hydrate inhibitors for drilling fluids are summarized in Chapter 13.

Weighting Materials

There are many weighting materials, including barite and iron oxides, which are
used to increase the specific weight of a slurry. Conversely, the specific weight
can be reduced by foaming or by the addition of hollow glass particles.

Barite
Barite has been used as a weighting agent in drilling fluids since the 1920s. It is
preferred over other materials because of its high density, low production costs,
low abrasiveness, and ease of handling. Other weighting materials have been
used, but they are problematic or costly. Finished barite producers sometimes
blend ores from different sources to obtain the desired average density to meet
API specifications.

Some barite ores contain alkaline-soluble carbonate minerals that can be
detrimental to a drilling fluid, such as iron carbonate (siderite), lead carbonate
(cerussite), and zinc carbonate (smithsonite) (Kulpa et al., 1992). Details of how
to characterize barite have been worked out (Recommended practice for chemi-
cal analysis of barite, 1996). Barite can be modified to become oleophilic (Shen
et al., 1998, 1999).
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To recover barite from drilling muds, a direct flotation without prior dewa-
tering and washing of the drilling muds has been described (Heinrich, 1992).
An alkyl phosphate is used as a collecting and frothing reagent.

Ilmenite
Environmental considerations suggest replacing barite with ilmenite. However,
the use of this as weighting material can cause severe erosion problems. Using
ilmenite with a narrow particle size distribution around 10µ can reduce the
erosion to a level experienced with barite (Saasen et al., 2001).

Carbonate
It is possible to replace barite and iron-based weighting material with carbonate
if a high degree of weighting is not required. Besides being cheaper than barite,
such materials are less abrasive, which is especially important when drilling is
performed in producing formations. It is also readily soluble in hydrochloric
acid. The main shortcomings of carbonate powders are due to the presence of
a coarsely divided fraction, and also of noncarbonate impurities (Lipkes et al.,
1996).

Zinc Oxide, Zirconium Oxide, and Manganese Tetroxide
Zinc oxide (ZnO), is a particularly suitable material for weighting because it has
a high density; 5.6 gml−1 versus 4.5 gml−1for barite. It is soluble in acids (e.g.,
HCl), and its particle size can be set so that it does not invade the formation.
Acid solubility is particularly useful because dissolved ZnO can be pass through
a production screen without plugging it. A high density means less weighting
material is needed per unit mud volume to achieve a desired density.

The particle size, around 10µ, is such that the ZnO particles do not invade
the formation core with the filtrate. On the other hand, the particle size is not
large enough to settle out of suspension.

Zirconium oxide possesses similar properties to ZnO. It has a density of
5.7 gml−1 and is soluble in nitric acid and hot concentrated hydrochloric,
hydrofluoric, and sulfuric acids. Therefore, a filter cake formed from zinc or
zirconium oxide can be dissolved. The high solubility of ZnO in acids makes it
particularly suitable as weighting material (Lau et al., 1997). On the other hand,
manganese tetroxide (Mn3O4) is so fine that it invades the formation with the
filtrate.

Hollow Glass Microspheres
Initially, glass microspheres were used in the 1970s to overcome severe lost
circulation problems in the Ural Mountains. The technology has subsequently
been used in other sites (McDonald et al., 1999). Hollow glass beads reduce the
density of a drilling fluid and can be used for underbalanced drilling (Medley Jr.
et al., 1997, 1995). Field applications have been reported (Arco et al., 2000).
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Organoclay Compositions

It has long been known that organophilic clays can be used to thicken a variety
of organic compositions. Such clays are prepared by the reaction of an organic
cation with a clay. If this cation contains at least one alkyl group of at least
8–10 carbon atoms, then the clays produced have the property of increasing the
viscosity of organic liquids and thus imparting desired rheological properties to
a wide variety of such liquids, including paints, coatings, adhesives, and similar
products.

It is also well known that such organoclays may function to thicken polar
or nonpolar solvents, depending on the organic salt. Their efficiency in non-
aqueous systems can be further improved by adding a polar organic material of
low molecular weight to the composition. Such materials have been called dis-
persants, dispersion aids, and solvating agents. Low molecular weight alcohols
and ketones, particularly methanol and acetone, have been found to be the most
efficient.

Organophilic clays are generally prepared by reacting a hydrophilic clay
with an organic cation, usually a quaternary ammonium salt compound pro-
duced from a fatty nitrile. Examples of hydrophilic clays include bentonite,
attapulgite, and hectorite.

Native clay surfaces have negatively charged sites and cationic counter ions
such as sodium and calcium cations. Thus, they may be treated with a cationic
surfactant to displace the cations that are naturally present at the clay surfaces.
The cationic surfactant becomes tightly held to the surfaces through electro-
static charges. In this manner, the hydrophilic nature of the clay is reversed,
making it more soluble in oil. Bentonite, when treated with sodium cations,
is known as sodium bentonite. Those monovalent sodium cations may be eas-
ily displaced from the clay, making a large number of anionic sites available
(Miller, 2009).

Quaternary ammonium compounds contain nitrogen moieties in which one
or more of the hydrogen atoms attached to the nitrogen are substituted by
organic radicals. One of the most popular quaternary ammonium compounds for
organophilic clays is dimethyl dihydrogenated tallow ammonium chloride. Tal-
low contains unsaturated and saturated fatty acids, including oleic acid, palmitic
acid, stearic acid, and other minor fatty acids.

The hydrocarbon structure of this compound and the two long chain alkyl
groups makes it very oil-soluble. Further, the presence of two methyl groups
prevent steric interference, thus allowing close packing of the ammonium cation
at the clay surface.

The dimethyl dihydrogenated tallow ammonium chloride surfactant, how-
ever, cannot be activated efficiently at relatively low temperatures. Improved
cationic surfactants have been developed in which the ammonium com-
pounds have greater numbers of alkyl groups. Inclusion of a benzyl group
greatly enhances the performance of organophilic clays at low temperatures
(Miller, 2009).
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Two or more types of organic salts in the presence of an organic anion
act synergistically. The combination of hydrophobic and hydrophilic organic
salts and an organic anion produces an organophilic clay gellant, which exhibits
improved gelling properties in nonaqueous systems (Nae et al., 1995).

Examples are dimethyl dihydrogenated tallow quaternary ammonium chlo-
ride and methyl bis-polyoxyethylene (15 units) cocoalkyl quaternary ammo-
nium chloride, and the salts stearic, succinic, and tartaric acids (Mardis et al.,
1997; Nae et al., 1993, 1999).

Biodegradable Organophilic Clay
Organophilic clays are treated with a quaternary ammonium surfactant having
an amide linkage. Examples of such surfactants are shown in Figure 1.6.

The surfactants are based on stearamides. The benzyl group greatly enhances
the performance of organophilic clays at temperatures near 7◦C.

This type of cationic surfactant is substantially biodegradable, meaning that
it is capable of being decomposed by natural biological processes. In partic-
ular, it undergoes aerobic biodegradation, which is the breakdown of organic
chemicals by microorganisms when oxygen is present.

In this process, aerobic bacteria use oxygen as an electron acceptor and
degrade organic chemicals into smaller compounds, producing carbon dioxide
and water as the final product (Miller, 2009).

Clays treated in this way may therefore be used in drilling fluids without
concern that the surfactant could accumulate in the environment. The surfactant
will usually not reach toxic levels that could harm the surrounding environment
and the life supported by it (Miller, 2009). The organophilic clay is suitable for
both oil-based fluids and invert emulsions.

Polyvinyl neodecanoate
Organophilic clays have been considered as necessary for the suspension of
drill cuttings. However, formulations have been developed recently that have
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FIGURE 1.6 Quaternary ammonium surfactants (Miller, 2009).
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improved suspension properties, without organophilic clays (Miller and Kirsner,
2009).

Additives for clayless formulations are emulsified copolymers of
2-ethylhexyl acrylate (EHA) and AA. However, at elevated temperatures it is
likely that some acrylate will hydrolyze to AA, thus raising the level of AA
moieties in the copolymer. For certain applications, vinyl neodecanoate may be
substituted for EHA (Miller and Kirsner, 2009).

These drilling fluids do not need viscosifiers or additional suspension agents
and generally do not need fluid loss control agents or filtration control additives.
Their rheological properties remain stable over a broad temperature range, even
after exposure to high temperatures (Miller and Kirsner, 2009).

Since space is limited at some well sites, such as offshore platforms, it may
be advantageous to use efficient drilling fluid additives, which can be formulated
using as few additives as possible.

Miscellaneous

Reticulated Bacterial Cellulose
Reticulated bacterial cellulose may be used in place of a conventional gel-
lant, or in combination with conventional gellants to produce enhanced drilling
muds (Westland et al., 1992). Only relatively small quantities of this material is
needed to enhance their rheologic properties.

Scleroglucan
Scleroglucan is a polysaccharide secreted by the mycelia of certain microorgan-
isms, produced by aerobic fermentation of d-glucose. It has been proposed as a
better alternative to xanthan gum for drilling fluid compositions (Gallino et al.,
1996).

For drilling fluid applications, scleroglucan can be used in unrefined form.
It is an effective thickener for water (Vaussard et al., 1997) and enhances the
lubricating and cleaning power of WBMs. In the drilling of deviated wells, scle-
roglucan permits better cleaning of the well (Donche et al., 1994; Vaussard et al.,
1991). It can also be used in drilling jobs with large-diameter wells (Lacret and
Donche, 1991; Ladret and Donche, 1991, 1996).

Uintaite
Uintaite is a naturally occurring, hydrocarbon mineral that is classified as an
asphaltite. It is a natural product whose chemical and physical properties vary
and depend strongly on the uintaite source. It is also called Gilsonite, which is
a registered trademark of American Gilsonite Co., Salt Lake City, Utah.

General purpose Gilsonite brand resin has a softening point of about 175◦C,
Gilsonite HM has a softening point of about 190◦C, and Gilsonite Select 300
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and Select 325 have softening points of about 150◦C and 160◦C, respectively.
The softening points of these natural uintaites depend primarily on the source
vein that is mined when the mineral is produced.

Uintaite is described by Kirk-Othmer (Neel, 1980). The typical material used
in drilling fluids is mined from an area around Bonanza, Utah, and has a spe-
cific gravity of 1.05 with a softening point ranging from 190–205◦C, although
a lower softening point (165◦C) material is sometimes used. It has a low acid
value, a zero iodine number, and is soluble or partially soluble in aromatic and
aliphatic hydrocarbons, respectively.

For many years uintaite and other asphaltic-type products have been used in
water-based drilling fluids as additives to assist in borehole stabilization. These
additives can minimize hole collapse in formations that contain water sensitive,
sloughing shales. Uintaite and asphalt-type materials have been used for many
years to stabilize sloughing shales and to reduce borehole erosion. Other benefits
derived from these products include borehole lubrication and reduction in the
need for filtration.

Uintaite is not easily water-wet with most surfactants. Thus, stable disper-
sions of uintaite are often difficult to achieve, particularly in the presence of
salts, calcium, solids, and other drilling fluid contaminants and in the presence of
diesel oil. The uintaite must be readily dispersible and must remain water-wet;
otherwise it will coalesce and be separated from the drilling fluid, along with
cuttings at the shale shaker or in the circulating pits. Surfactants and emulsifiers
are often used with uintaite drilling mud additives.

Loose or poor bonding of the surfactant to the uintaite will lead to it being
washed off during use, possible agglomeration, and the removal of uintaite from
the mud system with the drilling wastes. Thus, the importance of the wettability,
rewettability, and storage stability criteria is evident.

A preferred product comprises about 2 parts Gilsonite HM, about 1 part
Gilsonite Select, about 1 part causticized lignite, and about 0.1–0.15 part of a
non-ionic surfactant (Christensen et al., 1991, 1993).

Sodium Asphalt Sulfonate

Neutralized sulfonated asphalt (i.e., salts of sulfonated asphalt and their blends
with materials such as Gilsonite, blown asphalt, lignite, and mixtures of the
latter compounds) are commonly used as additives in drilling fluids. These addi-
tives, however, cause some foaming in water or water-based fluids, and they are
only partially soluble in the fluids.

Liquid additives have therefore been developed to overcome some of the
problems associated with the use of dry additives. However, liquid compositions
containing polyglycols can give rise to stability problems. Stable compositions
can be obtained by special methods of preparation (Patel, 1996). In particular
first the viscosifier is mixed with water, then the polyglycol, and finally the
sulfonated asphalt is added.
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Formation Damage by Gilsonite and Sulfonated Asphalt

Laboratory experiments have been conducted with a chromium lignite/
chromium lignosulfonate mud system both without and with solid lubricants.
These studies looked at filtration loss, cake quality, and their impact on the
formation.

A comparative evaluation has led to the conclusion that Gilsonite is a better
additive compared with sulfonated asphalt, as it results in less filtration loss
and compact cake formation, thereby reducing formation damage. Flow studies
have indicated that the addition of these solid lubricants can be used in drilling
fluids without adversely impacting the producing zones (Garg et al., 1995).

Multicomponent Additives

Multi-component additives for drilling fluids have been proposed, containing
three primary components, namely a (Brazzel, 2009)

1. Rate of penetration enhancer,
2. Lubricant, and
3. Clay inhibitor or stabilizer.

Penetration enhancers are ester-based oils, which are potential carriers for
other additives, such as surfactants. The lubricant is a chlorinated wax. The
clay stabilizer is a polyglycol. The three components are premixed in a single
container, for ease of use in adding to a drilling fluid system.

The pre-blended additive has significant advantages. Once a desired specific
ratio is blended, then adding it at that ratio to a drilling fluid system is very much
simplified and maintaining the desired volumetric concentrations in the system
is much easier. Adding it to the overall system, is much quicker than adding
each component singly (Brazzel, 2009).

CLEANING OPERATIONS

Cuttings Removal

When drilling deviated and horizontal wells, gravity causes deposits of drill cut-
tings and especially fines, or smaller sized cuttings, to build up along the lower
side or bottom of the wellbore. Such deposits are commonly called cuttings
beds. Buildup of cuttings beds can lead to undesirable friction, and possibly to
sticking of the drill string.

Removing the drill cuttings from a deviated well, in particular when drilled
at a high angle, can be difficult. Limited pump rate, eccentricity of the drill pipe,
sharp build rates, high bottom hole temperatures, and oval-shaped wellbores can
all contribute to inadequate hole cleaning.

Well treatments by circulating fluids that have been specially formulated to
remove such cuttings beds are periodically necessary to prevent buildup to the
point that the cuttings or fines interfere with the drilling apparatus.
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Usually, the drilling operation must be stopped while such treatment fluids
are swept through the wellbore to remove the fines. Alternatively, special vis-
cosifier drilling fluid additives have been proposed to enhance the ability of
the drilling fluid to transport cuttings, but such additives at best merely delay
the buildup of cuttings beds and they can be problematic in themselves if they
change the density of the drilling fluid. Removal of cutting beds has also per-
formed mechanically wherein the drill string is pulled back along the well,
pulling the bit through the horizontal or deviated section of the well.

Barium sulfate can be used as a sweep material. It should be ground and
sieved to a size range that is sufficiently small to enable it to be suspended in
the drilling fluid. After adding it to the drilling fluid, the fluid is circulated in the
wellbore, where it removes the small cuttings or cuttings beds from the borehole
and delivers them to the well surface.

The composition and the cuttings are then removed from the drilling fluid
in a manner that prevents a significant change in its density. This is done by
sieving or screening, preferably by the principal shale shaker of the drilling
operation (West et al., 2001).

Junk Removal

Drilling equipment that is broken or stuck in the hole can be dissolved by means
of nitric and hydrochloric acids mixed in a proportion of 1:3. To accelerate the
dissolving of the metal, a mixture containing 1.1 parts of sodium nitrate and
1.0 part of monoethanolamine is added initially to the acids in the amount of
0.05–13.0 parts per 100 parts of acid mixture. The acidic residue in the hole is
neutralized by addition of alkali and converted into drilling fluid by addition of
polymer solution (Dolganskaya and Sharipov, 1992).

Filter Cake Removal

As the drilling fluid is circulated, a layer of solids, referred to as a filter cake, is
usually formed on the walls of the wellbore. A certain degree of cake buildup
usually is desirable to isolate formations from drilling fluids. Once the wellbore
has been drilled to the desired depth, the drill string and bit are removed, and a
pipe string, e.g., casing, liners, etc., are introduced into the wellbore.

Eventually, the wellbore may be conditioned by circulating the drilling fluid.
The purpose of this conditioning is to remove as much of the filter cake and the
gelled drilling fluid from the walls of the wellbore as possible. However, some-
times this is not enough to remove the undesired material completely. Problems
with subsequent processing, e.g., in primary cementing operations may also
arise, because in general, cement compositions are not compatible with the
drilling fluid and the filter cake.

To mitigate these problems, a special chemical wash composition containing
surfactants can be introduced, sometimes known as preflushes.
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FIGURE 1.7 Acylation of N-Methyl-taurine.

An aqueous chemical wash solution contains sulfonated bisulfite lignin, and
a taurate, present in amounts of 0.1– 5% (Dealy and Chatterji, 2010). The sul-
fonated lignin is produced by the bisulfite process, or by sulfomethylation of a
lignosulfonate with formaldehyde.

Taurates, or taurides, are generally based on taurine, or 2-aminoethane-
sulfonic acid. Taurine occurs naturally in food, being first isolated from ox
bile in 1827. Taurine derivates have biological and medial roles (Azuma et al.,
2009), and are used in cosmetics and as surfactants.

Examples of taurates useful for preflushes are N-methyl-N-cocoyl tau-
rate, N-methyl-N-palmitoyl taurate, and N-methyl-N-oleyl taurate and their
metal salts. They are obtained by the acylation of N-methyl taurine with the
corresponding long chain acids (Walele and Syed, 1995), c.f., Figure 1.7.

Additional additives may be included in the chemical wash compositions,
such as (Dealy and Chatterji, 2010):

l Viscosifying agents,
l Defoamers,
l Curing agents,
l Corrosion inhibitors,
l Scale inhibitors, and
l Formation conditioning agents.

Viscosifying agents may be clays, diatomaceous earth, starches, or polymers.

DRILLING FLUID DISPOSAL

Toxicity

Drilling fluids are known to be potentially toxic and are therefore environ-
mentally damaging. They are composed, unlike other most toxic agents, of a
wide variety of chemicals, thus making it difficult to predict the actual risk
of a specific drilling mud, but methods for assessing this toxicity have been
developed (Kanz and Cravey, 1985).

Studies under laboratory conditions revealed that in 9% of cases, drilling
muds were acutely toxic at concentrations of 1,000–10,000 ppm. However, in
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the natural environment, concentrations drop rapidly to background levels of
around 200–1,000 ppm, hence low levels may be tolerated in the environment.

In a more recent study, soil samples from oil and gas drilling and production
sites were analyzed for contaminating substances associated with drilling fluids
and petroleum products. The results revealed that contamination of the soil was
widespread and persistent. However, it is generally localized in the immediate
vicinity of drilling and production activity. Most prominently, heavy metals,
such as barium, chromium, lead, and zinc were detected. Further problems may
be caused by salinity, pH, and petroleum hydrocarbons.

No discernible pattern of contamination between well sites was observed
due to the variability of methods and materials used in the drilling of individual
wells. It was considered that the levels of contaminating agents that were found
do not represent an immediate environmental threat. However, the long-term
cumulative effects are largely unknown (Carls et al., 1995).

The most consistently toxic bioassay phase is the suspended solid phase.
This phase consists of bentonite, cuttings, and soluble components. The toxicity
has been explained by specific chemical toxicity of a given mud component,
or by physical toxicity generated by abrading or clogging epithelial tissue, i.e.,
respiratory or digestive body surfaces. In addition, the danger to marine animals
from exposure to waste drilling muds may also originate from chemical toxicity.
Further details are beyond the scope of this text and the reader is referred to the
literature for more information (Kanz and Cravey, 1985, p. 329).

In a long-term study, the influence of increased levels of petroleum hydro-
carbons upon soil and plants has been studied. Different doses of drilling fluids
and crude oil were applied to clean soil, and the changes in some chemical
parameters of the soil, plant density, and crop yields were measured. Drilling
fluids showed a stronger impact on the chemical properties of the studied soil,
while the plant density and yield were more strongly affected by the levels of
crude oil. The soil levels of petroleum hydrocarbons, mineral oils, and poly-
cyclic aromatic hydrocarbons were significantly reduced after the first trial year
(Kisic et al., 2009).

For the reasons illustrated above, there is a need to take care in the waste
management of drilling muds. Selected solutions for the waste management of
these materials will now be discussed.

Conversion Into Cements

Water-based drilling fluids may be converted into cements using hydraulic blast
furnace slag (Bell, 1993; Cowan and Hale, 1995; Cowan et al., 1994; Cowan
and Smith, 1993; Zhao et al., 1996), a unique material that has low impact on
the rheological and fluid loss properties of drilling fluids. It can be activated to
set in drilling fluids that are difficult to convert to cements by other solidification
technologies.
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Hydraulic blast furnace slag has a more uniform and consistent quality
than Portland well cements, and it is available in large quantities from mul-
tiple sources. Fluid and hardened solid properties of blast furnace slag and
drilling fluids mixtures used for cementing operations are comparable with the
properties of conventional Portland cement compositions.

Environmental Regulations

In response to effluent limitation guidelines promulgated by the Environmen-
tal Protection Agency for the discharge of drilling wastes offshore, alternatives
to WBMs and OBMs have been developed. Thus, synthetic-based muds are
more efficient than WBMs for drilling difficult and complex formation inter-
vals, and they have lower toxicity and lower environmental impacts than diesel
or conventional mineral OBMs.

Synthetic drilling fluids may present a significant pollution prevention
opportunity, because they are recycled, and smaller volumes of metals are dis-
charged with the cuttings. A framework for a comparative risk assessment for
the discharge of synthetic drilling fluids has been developed that will help to
identify potential impacts and benefits associated with the use of specific drilling
muds (Meinhold, 1998).

CHARACTERIZATION OF DRILLING MUDS

Important parameters for characterizing the properties of a drilling mud are
viscosity, specific weight, gel strength, and filtration performance.

Viscosity

Viscosity is measured by means of a Marsh funnel. The funnel is dimensioned
so that the outflow time of 1 qt (926 ml) fresh water at 70◦F (21◦C) is 26 s.

Viscosity is also measured with a rotational viscometer. The mud is placed
between two concentric cylinders. One cylinder rotates with constant velocity,
while the other is connected by a spring. The torque on this cylinder results in a
deviation of its position from rest, which may serve as a measure of viscosity.

Gel strength is measured by a rotational viscometer, if the maximal deflec-
tion of the pointer is monitored when the motor is turned on with low speed, the
liquid being at rest for a prolonged time before, for example, for 10 min. This
maximal deflection measurement is referred to as a 10-minute gel.

API Filtration

A filter press is used to determine the wall-building characteristics of a mud.
This press consists of a cylindrical chamber, which is resistant to alkaline media.
A filter paper is placed on the bottom of the chamber. The mud is placed into
the chamber and a pressure of 0.7 MPa is applied. After 30 min the volume of
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filtrate is reported. The filter cake is inspected visually and the consistency is
noted as hard, soft, tough, rubbery, or firm.

There is another procedure suitable for OBMs under high-pressure and high-
temperature conditions. Here, filtration is performed at 100 psi (7 MPa) and at
temperatures of 200◦F (93◦C). It should be noted that research has shown that
there may be significant differences between static and dynamic filtering.

Alkalinity and pH

Alkalinity is measured by acid-base titration, with methylorange or phenolph-
thalein as an indicator. Phenolphthalein changes color at pH 8.3, whereas
methylorange changes color at pH 4.3. At pH 8 the neutralization of the strongly
alkaline components such as NaOH is essentially complete.

Further reduction of the pH to 4 will also measure the levels of carbonates
and bicarbonates that are present. Colorimetric tests and glass electrode systems
are used to determine pH. Some indicators are shown in Figure 1.8.

Total Hardness

The sum of calcium and magnesium ions in the mud determines its total hard-
ness. These ions are analyzed by complexometric titrations using ethylene
diamine tetraacetic acid.

Roller Oven

The effects of temperature and various chemical additives on the rheological,
filtration, and chemical properties of fluids and muds under simulated circu-
lating conditions can be elucidated in a roller oven (Schroeder, 1987, 1992).

Methylorange

O

O

OH

OH

Phenolphthalein

NN
H3C

H3C
SO3NaN

FIGURE 1.8 pH Indicators.
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Cyclindrical cell

Test fluid

Driven rollers

FIGURE 1.9 Construction of a roller cell (schematically).

Its basic construction is shown in Figure 1.9. A more detailed view can be found
in the literature (Schroeder, 1987).

In this oven, motorized rollers rotate a cylindrical cell, which contains the
sample under investigation. A heating element is situated beneath the rollers,
which heats the chamber to a predetermined temperature. A timer may be pre-
set to start and end the test automatically without having an operator in constant
attendance (Schroeder, 1987). The roller oven is a versatile tool to monitor age-
ing, and the change in properties of fluids used in the petroleum industry, as a
function of temperature (Mueller et al., 2003).
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TABLE 1.13 Tradenames in References

Tradename
Description Supplier

Accolade® Halliburton Energy Services, Inc.
Drilling fluid (Bell and Shumway, 2009)

Adapta® Halliburton Energy Services, Inc.
Filtration control agent
(Bell and Shumway, 2009;
Miller and Kirsner, 2009)

Aquagel® Halliburton Energy Services, Inc.
Sodium montmorillonite clay
(Ravi et al., 2009)
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TABLE 1.13 Tradenames in References–Cont’d

Tradename
Description Supplier

AquaPAC® Aqualon Corp.
Polyanionic cellulose
(Melbouci and Sau, 2008)

BARABUF® Halliburton Energy Services, Inc.
Buffer (Ravi et al., 2009)

BARACARB® Halliburton Energy Services, Inc.
Ground marble (Miller and Kirsner, 2009)

BARASIL® S Halliburton Energy Services, Inc.
Sodium silicate shale stabilizer
(Ravi et al., 2009)

BARAZAN® Halliburton Energy Services, Inc.
Polysaccharide (Ravi et al., 2009)

BAROID® 41 Halliburton Energy Services, Inc.
Ground barium sulfate
(Bell and Shumway, 2009;
Miller and Kirsner, 2009)

CELLEX Halliburton Energy Services, Inc.
Carboxymethyl cellulose
(Ravi et al., 2009)

Celpol® (Series) Noviant, Nijmegen
Polyanionic cellulose
(Melbouci and Sau, 2008)

Clay Sync™ Baroid
Shale stabilizer (Maresh, 2009)

ClaySeal® Baroid Fluid Services
Shale stabilizer (Maresh, 2009)

COLDTROL™ Halliburton Energy Services, Inc.
Fatty alcohol thinner
(Miller and Kirsner, 2009)

Disponil® Henkel
Ether sulfonates (Emulsifyer)
(Guichard et al., 2008)

Driltreat™ Halliburton Energy Services, Inc.
Wetting agent (Miller and Kirsner, 2009)

EDC95® BHI
n-Alkane cuts (Dalmazzone, 2007)
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TABLE 1.13 Tradenames in References–Cont’d

Tradename
Description Supplier

EZMUD® Halliburton Energy Services, Inc.
Partially hydrolyzed polyacrylamide
(Ravi et al., 2009)

FACTANT™ Halliburton Energy Services, Inc.
Concentrated emulsifier
(Miller and Kirsner, 2009)

FILTER-CHEK® Halliburton Energy Services, Inc.
Modified cellulose
(Maresh, 2009; Ravi et al., 2009)

Geltone® (Series) Halliburton Energy Services, Inc.
Organophilic clay
(Bell and Shumway, 2009; Miller, 2009;
Miller and Kirsner, 2009)

Grabber® Baroid
Flocculant (Maresh, 2009)

Hydro-Guard® Halliburton Energy Services, Inc.
Inhibitive water-based-fluid (Maresh, 2009)

IMPERMEX Halliburton Energy Services, Inc.
Pregelatinized cornstarch (Ravi et al., 2009)

Interdrill Emul HT® Dowell Schlumberger
Emulgator (Dalmazzone, 2007)

Interdrill® LORM Dowell Schlumberger
Emulsification system (Dalmazzone, 2007)

Invermul® Halliburton Energy Services, Inc.
Blends of oxidized tall oil
and polyaminated fatty acids
(Bell and Shumway, 2009; Ravi et al., 2009)

Kleemul® BW Group
Emulsifier (Guichard et al., 2008)

Kraton® Shell
Styrenic block copolymer
(Guichard et al., 2008)

LE BASE™ Halliburton Energy Services, Inc.
Base drilling fluid
(Miller and Kirsner, 2009)

LE SUPERMUL™ Halliburton Energy Services, Inc.
Emulsifier (Bell and Shumway, 2009;
Miller and Kirsner, 2009)
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TABLE 1.13 Tradenames in References–Cont’d

Tradename
Description Supplier

LIQUI-VIS Baroid
Hydroxyethyl cellulose (Ravi et al., 2009)

Lorm® Dowell Schlumberger
Emulsifier (Dalmazzone, 2007)

MICRO MATRIX® Halliburton Energy Services, Inc.
Cement (Dealy and Chatterji, 2010)

N-Dril™ HT Plus Baroid
Filtration control agent (Maresh, 2009)

PAC™ -L Baroid
Filtration control agent (Maresh, 2009)

PAC Halliburton Energy Services, Inc.
Polyanionic cellulose (Ravi et al., 2009)

PETROFREE® LV Halliburton Energy Services, Inc.
Ester-based invert emulsion
(Miller and Kirsner, 2009)

PETROFREE® SF Halliburton Energy Services, Inc.
Olefin-based invert emulsion
(Miller and Kirsner, 2009)

Plex® Rohm & Haas
Acrylate resin (Guichard et al., 2008)

Plioflex® Goodyear Chemicals
Styrene butadiene rubber
(Guichard et al., 2008)

Pliolite® DF01 Goodyear Tire & Rubber Co.
Styrene-butadiene copolymer
(Guichard et al., 2008)

POLYAC® Halliburton Energy Services, Inc.
Polyacrylate (Ravi et al., 2009)

Resinoline® BD2 DRT-GRANEL
Tall oil fatty acid (Dalmazzone, 2007)

RHEMOD™ L Halliburton Energy Services, Inc.
Modified fatty acid
(Bell and Shumway, 2009)

Scotchlite™ 3M Comp.
Reflective glass (Ravi et al., 2009)
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TABLE 1.13 Tradenames in References–Cont’d

Tradename
Description Supplier

SF BASE™ Halliburton Energy Services, Inc.
Base drilling fluid
(Miller and Kirsner, 2009)

Silwet® O Si Specialities, Inc.
Ethyleneoxy surfactants (Patel, 2008)

Staflo® Akzo Nobel
PAC (Melbouci and Sau, 2008)

Suspentone™ Diversity Technologies Corp.
Attapulgite clay (Miller, 2009;
Miller and Kirsner, 2009)

Ultidrill® Dowell Schlumberger
Hydrocarbon cuts (Dalmazzone, 2007)

Versawet® NS M-I Drilling Fluids L.L.C.
Wetting agent (Patel, 2008)

XP07® Baroid
n-Alkane cuts (Dalmazzone, 2007;
Miller and Kirsner, 2009)

X-VIS™ Halliburton Energy Services, Inc.
Suspension agent (Bell and Shumway,
2009; Miller and Kirsner, 2009)

Zeogel® Halliburton Energy Services, Inc.
Attapulgite clay (Ravi et al., 2009)
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