Tips and Tricks of HPLC System Troubleshooting

Agilent Technologies, Inc. LC Tips And Tricks Seminar Series

Trouble Shooting Steps

You Have Recognized There is a Problem! How Do You Fix It?

- •1st Did System Suitability or Sample Fail?
- •2nd Review Method for Compliance
 - Is The Procedure Being Followed Properly?
 - Are Instrument Settings Correct?
- •3rd Ask More Questions!
 - When Did the System Last Function Properly?
 - Has Anything Been Changed?
- •4th Review ALL parameters!
 - The Obvious Is Not Always the Cause
 - Was There More Than One Change?

HPLC System Components

Pump Injector/Autosampler Column Detector Data System/Integrator

Problems Can Be Related to All Components in the System

Categories of Column and System Problems

A. Pressure

B. Peak shape

C. Retention

Pressure Issues

Column Observations	Potential Problems
High pressure	- Plugged frit
	- Column contamination
	- Plugged packing
Low Pressure	- Leak
	- Flow Incorrect

Determining the Cause and Correcting High Back Pressure

- Check pressure with/without column many pressure problems are due to blockages in the system or guard col.
 - Remove Column Pressure Still High?
 - Remove Guard Pressure Still High?

• If Column pressure is high:

- Back flush column Clear "dirty" frit surface
- Wash column Eliminate column contamination and plugged packing
 - high molecular weight/adsorbed compounds
 - precipitate from sample or buffer

Change frit – Clear plugged frit *PREVENT THIS!*

Column Cleaning

Flush with stronger solvents than your mobile phase.

Reversed-Phase Solvent Choices in Order of Increasing Strength

Use at least 25 mL of each solvent for analytical columns

- Mobile phase without buffer salts
- 100% Methanol
- This Is Time Consuming Often Performed Offline
- 100% Acetonitrile
- 75% Acetonitrile:25% Isopropanol
- 100% Isopropanol
- 100% Methylene Chloride*
- 100% Hexane*

Must Reverse to

Re-Equilibrate

*Tip: When using either Hexane or Methylene Chloride the column must be flushed with Isopropanol before returning to your reversed-phase mobile phase.

Changing a Frit May Not Be a Good Idea

May not be possible with new generation columns May damage high performance columns

Tip: Prevention is a Much Better Idea!

Agilent Technologies

The Trick: Prevention Techniques - A Better Choice!

Inexpensive Filters Prevent Column Frit Plugging

Regenerated Cellulose (RC) Recommended

•Universal hydrophilic membrane, compatible with most solvents - aqueous and organic
•High purity, extremely low extractables and binding
•More Uniform Surface

•Different than Other Cellulose Filters!!

In-line Filters Easy to Use and replace Frits Available in 0.2,0.5 and 2.0µ Porosity

Much Less expensive than a Column

Easier and Faster to Replace than a Column Frit

What Are Common Peak Shape Issues?

- 1. Split peaks
- 2. Peak tailing
- 3. Broad peaks
- Many peak shape issues are also combinations i.e. broad and tailing or tailing with increased retention
- •Symptoms do not necessarily affect all peaks in the chromatogram
- •Each of these problems can have multiple causes

Peak Splitting Caused By Disrupted Sample Path

•Flow Path Disrupted by Void

•Sample Allowed to Follow Different Paths Through Column

•Poorly Packed Bed Settles in Use

•High pH Dissolves Silica

Split or Double Peaks

Tip: Similar Effect Can be Caused by Partially Plugged Frit

Agilent Technologies

Split Peaks from Column Contamination

 $\begin{array}{c} \mbox{Column: StableBond SB-C8, 4.6 x 150 mm, 5 } \mu m & \mbox{Mobile Phase: 60\% 25 mM Na}_2 \mbox{HPO}_4, p\mbox{H 3.0 : 40\% MeOH} & \mbox{Flow Rate: 1.0 mL/min} \\ \mbox{Temperature: 35°C} & \mbox{Detection: UV 254 nm} & \mbox{Sample: Filtered OTC Cold Medication: 1. Pseudoephedrine} & \mbox{2. APAP} & \mbox{3. Unknown} & \mbox{4. Chlorpheniramine} \\ \end{array}$

Tip: Column washing eliminates the peak splitting, which resulted from a contaminant on the column How could this be prevented? (Guard Column, SPE clean up of samples, Periodic column wash)

Agilent Technologies

Split Peaks from Injection Solvent Effects

Tip: Injecting in a solvent stronger than the mobile phase can cause peak shape problems such as peak splitting or broadening
 Trick: Keep Organic Concentration in Sample Solvent Mobile Phase

Agilent Technologies

Group/Presentation Title Agilent Restricted April 29, 2009Month ##, 200X

Peak Tailing, Broadening and Loss of Efficiency

May be caused by:

- Column "secondary interactions"
- Column contamination
- Column aging
- Column loading
- Extra-column effects

Peak Shape: Tailing Peaks

<u>Causes</u>

Some Peaks Tail:

- Secondary Retention Effects.
- Residual Silanol Interactions.
- Small Peak Eluting on Tail of Larger Peak.

All Peaks Tail:

- Extra-Column Effects.
- Build up of Contamination on Column Inlet.
- Heavy Metals.
- Bad Column.

Peak Tailing Identifying Column "Secondary Interactions"

Column: Alkyl-C8, 4.6 x 150 mm, 5μm Mobile Phase: 85% 25 mM Na₂HPO₄ pH 7.0 : 15% ACN Flow Rate: 1.0 mL/min Temperature: 35°C Sample: 1. Phenylpropanolamine 2. Ephedrine 3. Amphetamine 4. Methamphetamine 5. Phenteramine

Tip: Mobile phase modifier (TEA) competes with Sample for surface ion exchange sites at mid-range pH values

Agilent Technologies

Peak Tailing Low pH Minimizes "Secondary Interactions" for Amines

Column: Alkyl-C8, 4.6 x 150 mm, 5μm Mobile Phase: 85% 25 mM Na₂HPO₄ : 15% ACN Flow Rate: 1.0 mL/min Temperature: 35°C Sample: 1. Phenylpropanolamine 2. Ephedrine 3. Amphetamine 4. Methamphetamine 5. Phenteramine

Tip: Reducing mobile phase pH reduces interactions with silanols and peak tailing.

Peak Tailing High pH Eliminates "Secondary Interactions" for Amines

Peak Shape and Retention of this sample of basic compounds improves at high pH where column has high IEX activity. <u>Why?</u>

Agilent Technologies

Peak Tailing - Column Contamination

Tip: Quick Test to Determine if Column is Dirty or Damaged

Trick: Reverse Column and Run Sample –If Improved, Possible Cleaning Will Help -No improvement-Column Damaged and Needs to be Replaced

Peak Tailing/Broadening Sample Load Effects

Columns: 4.6 x 150 mm, 5μm Mobile Phase: 40% 25 mM Na₂HPO₄ pH 7.0 : 60% ACN Flow Rate: 1.5 mL/min Temperature: 40°C Sample: 1. Desipramine 2. Nortriptyline 3. Doxepin 4. Imipramine 5. Amitriptyline 6. Trimipramine

Tip: Evaluate Both Volume and Mass Loading

Agilent Technologies

Group/Presentation Title Agilent Restricted April 29, 2009Month ##, 200X

Unknown "Phantom" Peaks

Tip: The extremely low plates for moderately retained peaks are an indication of a very late eluting peak from a preceding run.

Extra-Column Dispersion

Increasing Extra-Column Volume

- Use short, small internal diameter tubing between the injector and the column and between the column and the detector.
- Make certain all tubing connections are made with matched fittings.
- Use a low-volume detector cell.
- Inject small sample volumes.

Peak Broadening Extra-Column Volume

Column: StableBond SB-C18, 4.6 x 30 mm, 3.5 μmMobile Phase: 85% H2O with 0.1% TFA : 15% ACNFlow Rate: 1.0 mL/minTemperature: 35°CSample: 1. Phenylalanine2. 5-benzyl-3,6-dioxo-2-piperazine acetic acid3. Asp-phe4. Aspartame

Tip: Poorly Made HPLC System Connections Can Cause Peak Broadening

The System Has Been Optimized and :

- All Tubing Lengths Are Minimum
- Smallest Diameter Tubing Used
- Proper Flow Cell Volume

Symptom Still Seems to Have Too Much Extra-Column

Volume

What Is Wrong?

Have You Made the Connections Properly?

Column Connectors Used in HPLC

Troubleshooting LC Fittings, Part II. J. W. Dolan and P. Upchurch. LC/GC Magazine 6:788 (1988)

Agilent Technologies

What Happens If the Connections Poorly Made ?

Wrong ... too long

If Dimension X is too long, leaks will occur

Mixing Chamber

If Dimension X is too short, a dead-volume, or mixing chamber, will occur

Stainless Steel and Polymer Fittings

Which type is used and when?

Stainless Steel (SS) fittings are the best choice for reliable high pressure sealing

- Agilent uses Swagelok type fittings with front and back ferrules – which give best sealing performance – throughout all our LC systems
- PEEK (<400b bar System Pressure) fittings are ideal where:
 - Connections are changed frequently, i.e. connecting columns
 - Pressure is less critical

PolyKetone

- Easy, hand tighten column connection
- 600 bar Pressure Rating PN: 5042-8957 (10/pk)
- Fits to SS Tubing

Changes in Retention Can Be Chemical or Physical

May be caused by:

- Column aging
- Column contamination
- Insufficient equilibration
- Poor column/mobile phase combination
- Change in mobile phase
- Change in flow rate
- Different Gradient Delay Volumes

Column Aging/Equilibration Causes Retention/Selectivity Changes

- The primary analyte was sensitive to mobile phase aging/ conditioning of the column
- The peak shape was a secondary issue (metal chelating compound) resolved by "de-activating" the active metal contamination

Metal Sensitive Compounds Can Chelate

Hint: Look for Lone Pair of Electrons on :O: or N Which Can Form 5 or 6 Membered Ring with Metal

Salicylaldehyde

6-membered ring complex

8-hydroxyquinoline 5-membered ring complex

a-benzoinoxomine 5-membered ring complex

Acid Wash Can Improve Peak Shape

• A 1% H₃PO₄ solution is used on SB columns, 0.5 % can be used on endcapped columns.

Agilent Technologies

Example: Change in Retention/Selectivity

Unintended Mobile Phase Variation

Tip: The Source of the Problem is Often Not the Obvious Change

"I have experimented with our mobile phase, opening new bottles of all mobile phase components. When I use all fresh ingredients, the problem ceases to exist, and I have narrowed the problem to either a bad bottle of TEA or phosphoric acid. Our problem has been solved."

Agilent Technologies

Tip: Dwell Volume Differences Between Instruments Can Cause Changes in Retention and Resolution

Column: **ZORBAX Rapid Resolution Eclipse XDB-C8** 4.6 x 75 mm, 3.5 µm Mobile Phase: Gradient, 0 - 100 %B in 52.5 min. A: 5/95 methanol/ 25 mM phosphate pH 2.50 B: 80/20 methanol/25 mM phosphate pH 2.50 Flow Rate: 0.5 mL/min Temperature: 25°C Injection: 5 μL Detection: 250 nm Sample: Mixture of antibiotics and antidepressants Upper trace simulates actual run data entered into DryLab® 3.0 software Lower trace is simulated chromatogram for larger V_{D}

Trick: Measure and Correct for Dwell Volume (V_D)

If
$$V_{D1} > V_{D2}$$

Compensate for longer V_{D1} by adding
an isocratic hold to V_{D2} , such that
Hold + $V_{D2} = V_{D1}$

If
$$V_{D1} < V_{D2}$$

Delay injection, such that V_{D2} - delay = V_{D1}

001014P1.PPT

Mobile Phase pH and pH Buffers Why Are These So Important in HPLC?

•pH Effects Ionization

- Silica Surface of Column
- Sample Components of Interest

Buffers

- Resist Changes in pH and Maintain Retention
- Improve Peak Shape for Ionizable Compounds

• Effects Column Life

- Low pH strips Bonded Phase
- High pH Dissolves Silica

Minimize Change in Retention/Selectivity Lot-to-Lot

Evaluate:

- All causes of column-to-column change*
- Method ruggedness (buffers/ionic strength)
- pH sensitivity (sample/column interactions)

*All causes of column-to-column change should be considered first, especially when only one column from a lot has been tested.

Lot-to-Lot Selectivity Change Related to pH Choice

pH 4.5 - Lot 1 2-Base 3 4-Base 0 2 6 8 10 12 14 16 18 4 Time (min)

pH 3.0 - Lot 1

- pH 4.5 shows selectivity change from lot-to-lot for basic compounds
- pH 3.0 shows no selectivity change from lot-to-lot
- Indication of poorly controlled ionization

Agilent Technologies

Group/Presentation Title **Agilent Restricted** April 29, 2009Month ##, 200X

Why Worry About pH? pH, pKa and Weak Acids

- At pH 4.2 the sample exists as benzoic acid and the benzoate ion in a ratio of 1:1. Peak shape can be poor
- At pH 5.2 91% of the sample exists as the benzoate ion. RP retention decreases.
- At pH 3.2 91% of the sample exists as benzoic acid. RP retention increases.

Effect of pH on Peak Shape at or Near the Sample pK_a

pKa and should be avoided.

Why Worry About pH? pH, pKa and Weak Bases $R_{3}NH^{+} = R_{3}N + H^{+}$ $K_{a} = \frac{[R_{3}N][H^{+}]}{[R_{3}NH^{+}]}$ $K_{a} = 1 \times 10^{-9}$ $K_{a} = 9$

At pH 9 – the sample exists as protonated and unprotonated diphenhydramine in a ratio of 1:1. Peak shape can be poor.

- At pH 10 91% of the sample exists as unprotonated diphenhydramine.
- At pH 8 91% of the sample exists as protonated diphenhydramine.

Change in Retention with pH for Ionizable Compounds is Compound Dependent

Importance of pH and Buffers A Practical Example

- •Why the Sample Dictates Use
- •What Happens When Buffer Used Effectively
- •What Happens When Buffer Ignored or Used Improperly

Importance of pH and Buffers - A Practical Example Optimized Isocratic Conditions for Cardiac Drugs

I Don't Have Time to Make Buffers or Adjust pH ...

• Buffers are critical to good retention and peak shape in many separations.

What If You Work Outside the Buffer Range?

Don't Forget - Match Column to pH of Mobile Phase for Maximum Column Lifetime High pH and Room Temperature (pH 11 RT)

Tip: Use Columns Designed for chosen pH

Agilent Technologies

Detection Issues

Recognize Where the Problem Originates

- Is it a consequence of technique?
- Is It expected due to use of certain mobile phase components?
- Can it be corrected by adjusting detector parameters?
- Answers Will Help Find a Solution!

Let's Explore Some Problems and Solutions

Chromatographic Results with "Wrong" Lamp at 214 nm Wavelength

Tip: Could also be a symptom of aging lamp

Agilent Technologies

Expanded View of Chromatographic Results Generic Source Lamp at 214 nm Wavelength

Tip: Poor S/N makes it difficult to detect low level impurities

Effect of Detector Response Time

The System is operating well-the settings were poorly made!

Slow Data Rates Can Hinder Impurity Detection and Reduce Sensitivity

• Tip: Adjust the response rate of your detector for best peak detection.

Conclusions

HPLC column problems are evident as

- High pressure (prevention better than the cure)
- Undesirable peak shape
- Changes in retention/selectivity

Often these problems are not associated with the column and may be caused by instrument and chemistry issues.

- •pH of mobile Phase
- Instrument Connections
- Detector Settings
- Metal Contamination

Start With the Correct Questions

- •Find the Answers
- •The Answers will Lead to Solutions

Peak Shape: Fronting Peaks

Causes:

Column Overload

Peak Shape: Broad Peaks

All Peaks Broadened:

- Loss of Column Efficiency.
- Column Void.
- Large Injection Volume.

Some Peaks Broadened:

- Late Elution from Previous Sample (Ghost Peak).
 - High Molecular Weight.
 - Sample Protein or Polymer.

Don't Forget - Match Column to pH of Mobile Phase for Maximum Column Lifetime

low pH and high temperature (pH 0.8, 90°C)

Kirkland, J.J. and J.W. Henderson, Journal of Chromatographic Science, 32 (1994) 473-480.

Peak Shape: Negative Peaks

Causes:

- Absorbance of sample is less than the mobile phase.
- Equilibrium disturbance when sample solvent passes through the column.
- Normal with Refractive Index Detectors.

Ghost Peaks

Agilent Technologies

Noisy Baselines

Possible Causes:

- Dirty Flow Cell
- Detector Lamp Failing
- Pulses from Pump if Periodic
- Temperature Effects on Detector
- Air Bubbles passing through Detector

Drifting Baselines

- Gradient Elution
- Temperature Unstable (Refractive Index Detector)
- Contamination in Mobile Phase
- Mobile Phase Not in Equilibrium with Column
- Contamination Bleed in System

