

Certificate of Analysis Kaycha Labs

CBGa Crude(Crumble) N/A Sample Type: Crumble

Sample:CE11021003-001 Harvest/Lot ID: N/A Batch#: 1021.1.1-2.1 Metrc Source Package #: N/A Metrc #: N/A Batch Date: N/A Sample Size Received: 3 gram Total Weight/Volume: N/A Retail Product Size: N/A gram Ordered : 10/21/21 sampled : 10/21/21 Completed: 11/03/21 Expires: 11/03/22 Sampling Method: SOP-024

Nov 03, 2021 | Silver Linings Xtracts LLC License # R&D 636 Dutton Rd Eagle Point, OR, 97524, US

SEVENTH GEN EXTRACTS

PRODUCT I	dint, OR, 9 Image	SAFETY RES	ULTS											MISC.
		Pesticic	les Heav	Hg	Microbials	Mycotox	ins Resi	duals vents N	Filth	Water Activit			mogeneity T TESTED	Terpenes NOT TESTER
CANN	ABINOI	D RESULT	rs				TES	TED						
			і тнс 457 9	%	E	Ex man		otal CB		E			annabin 0579	
%	CBDV <loq< th=""><th>CBDVA <loo< th=""><th>CBG 24.301</th><th>CBD 1.124</th><th>CBDA 0,429</th><th>THCV 0.165</th><th>CBGA 45,567</th><th>CBN <loq< th=""><th>D9-THC 0.457</th><th>D8-THC <loq< th=""><th>THCVA <loq< th=""><th>CBC 1.743</th><th>THCA <loo< th=""><th>CBCA 0.271</th></loo<></th></loq<></th></loq<></th></loq<></th></loo<></th></loq<>	CBDVA <loo< th=""><th>CBG 24.301</th><th>CBD 1.124</th><th>CBDA 0,429</th><th>THCV 0.165</th><th>CBGA 45,567</th><th>CBN <loq< th=""><th>D9-THC 0.457</th><th>D8-THC <loq< th=""><th>THCVA <loq< th=""><th>CBC 1.743</th><th>THCA <loo< th=""><th>CBCA 0.271</th></loo<></th></loq<></th></loq<></th></loq<></th></loo<>	CBG 24.301	CBD 1.124	CBDA 0,429	THCV 0.165	CBGA 45,567	CBN <loq< th=""><th>D9-THC 0.457</th><th>D8-THC <loq< th=""><th>THCVA <loq< th=""><th>CBC 1.743</th><th>THCA <loo< th=""><th>CBCA 0.271</th></loo<></th></loq<></th></loq<></th></loq<>	D9-THC 0.457	D8-THC <loq< th=""><th>THCVA <loq< th=""><th>CBC 1.743</th><th>THCA <loo< th=""><th>CBCA 0.271</th></loo<></th></loq<></th></loq<>	THCVA <loq< th=""><th>CBC 1.743</th><th>THCA <loo< th=""><th>CBCA 0.271</th></loo<></th></loq<>	CBC 1.743	THCA <loo< th=""><th>CBCA 0.271</th></loo<>	CBCA 0.271
mg/g	<loq< td=""><td><loq< td=""><td>243.01</td><td>11.24</td><td>4.29</td><td>1.65</td><td>455.67</td><td><loq< td=""><td>4.57</td><td><loq< td=""><td><loq< td=""><td>17.43</td><td><loq< td=""><td>2.71</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>243.01</td><td>11.24</td><td>4.29</td><td>1.65</td><td>455.67</td><td><loq< td=""><td>4.57</td><td><loq< td=""><td><loq< td=""><td>17.43</td><td><loq< td=""><td>2.71</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	243.01	11.24	4.29	1.65	455.67	<loq< td=""><td>4.57</td><td><loq< td=""><td><loq< td=""><td>17.43</td><td><loq< td=""><td>2.71</td></loq<></td></loq<></td></loq<></td></loq<>	4.57	<loq< td=""><td><loq< td=""><td>17.43</td><td><loq< td=""><td>2.71</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>17.43</td><td><loq< td=""><td>2.71</td></loq<></td></loq<>	17.43	<loq< td=""><td>2.71</td></loq<>	2.71
LOQ	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %
Canr	nabinoid	l Profile	Test					1		$ \rightarrow $	\rightarrow			X
Analyze			Weig 0.414g	ht		Extractio			X	\times	Ext 13	racted By		$\langle \rangle$
		d -SOP.T.4 1 -CE00047		P.T.30.05		ent Used :	ed On - 10 HPLC 203				tch Date nning On		L 15:32:10	
Reagen	t	Dilution	Cor	isums. ID		1/	/		X			Const	ums. ID	
091721.03		800	2299 4360 000 0410 0420	00642 CD-041C C4-042AL	020338AS2 436							F14856 032589	1	

"Total THC" and "Total CBD" are calculated values and are an Oregon reporting requirement (OAR 333-064-0100). For Cannabinoid analysis, only delta 9-THC, THCA, CBD, CBDA are ORELAP accredited analytes. Cannabinoid values reported for plant matter are dry weight corrected; Instrument LOQ for all cannabinoids is 0.5 mg/mL, LOQ 'in matrix' is dependent on extraction parameters. FD = Field Duplicate; LOQ = Limit of Quantitation.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=1n-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith Lab Director State License # 010-10166277B9D

ISO Accreditation # 99861

Signature

11/03/21

Signed On

540 E Vilas Rd Suite F Central Point, OR, 97502, US Kaycha Labs

CBGa Crude(Crumble) N/A Sample Type : Crumble

Page 2 of 4

TESTED

Certificate of Analysis

Silver Linings Xtracts LLC

636 Dutton Rd Eagle Point, OR, 97524, US Telephone: (551) 427-4515 Email: joseph@focushempco.com License #: R&D Sample : CE11021003-01 Harvest/LOT ID: N/A Batch# :1021.1.1-2.1 San Sampled :10/21/21 Tot Ordered :10/21/21 Con

Sample Size Received : 3 gram Total Weight/Volume : N/A Completed : 11/03/21 Expires: 11/03/22 Sample Method : SOP-024

Residual Solvents TESTED

Solvent	LOQ	Units	Action Level	Pass/Fail	Result
1-4 DIOXANE	190	ppm	380	R&D	<loq< td=""></loq<>
2-BUTANOL	2500	ppm	5000	R&D	<loq< td=""></loq<>
2-ETHOXYETHANOL	80	ppm	160	R&D	<loq< td=""></loq<>
2-PROPANOL	2500	ppm	5000	R&D	<loq< td=""></loq<>
ACETONE	2500	ppm	5000	R&D	<loq< td=""></loq<>
ACETONITRILE	205	ppm	410	R&D	<loq< td=""></loq<>
BENZENE	1	ppm	2	R&D	<loq< td=""></loq<>
BUTANES	1250	ppm	5000	R&D	<loq< td=""></loq<>
CUMENE	35	ppm	70	R&D	<loq< td=""></loq<>
CYCLOHEXANE	1940	ppm	3880	R&D	<loq< td=""></loq<>
DICHLOROMETHANE	300	ppm	600	R&D	<loq< td=""></loq<>
ETHANOL	500	ppm	1000000	R&D	<loq< td=""></loq<>
ETHYL ACETATE	2500	ppm	5000	R&D	<loq< td=""></loq<>
ETHYL ETHER	2500	ppm	5000	R&D	<loq< td=""></loq<>
ETHYLENE GLYCOL	310	ppm	620	R&D	<loq< td=""></loq<>
ETHYLENE OXIDE	25	ppm	50	R&D	<loq< td=""></loq<>
HEPTANE	2500	ppm	5000	R&D	<loq< td=""></loq<>
HEXANES	15	ppm	290	R&D	<loq< td=""></loq<>
ISOPROPYL ACETATE	2500	ppm	5000	R&D	<loq< td=""></loq<>
METHANOL	1500	ppm	3000	R&D	<loq< td=""></loq<>
PENTANES	833	ppm	5000	R&D	<loq< td=""></loq<>
PROPANE	2500	ppm	5000	R&D	<loq< td=""></loq<>
TETRAHYDROFURAN	360	ppm	720	R&D	<loq< td=""></loq<>
TOLUENE	445	ppm	890	R&D	<loq< td=""></loq<>
XYLENES	271	ppm	2170	R&D	<loq< td=""></loq<>

nalytical Batc	h -CE00049 ed : GCMS-Q 1/01/21 09:	550L Reviewed On P2020 EID:0170 44:58	- 11/01/21 15:52:59
nalytical Batc	h -CE00049 ed : GCMS-Q	5SOL Reviewed On P2020 EID:0170	- 11/01/21 15:52:59
nalytical Batc	h -CE00049	5SOL Reviewed On	- 11/01/21 15:52:59
33-007-0410 9			
olvents screer sing GC-MS to	ning is perfe	ormed	
nalyzed by	Weight 0.018g	Extraction date 11/01/21 09:11:54	Extracted By 12
	2 nalysis Metho olvents screer sing GC-MS to	2 0.018g nalysis Method -Residual olvents screening is perfo sing GC-MS to OAR	2 0.018g 11/01/21 09:11:54 nalysis Method -Residual olvents screening is performed sing GC-MS to OAR

Residual Solvents

Residual solvents screening is performed using GC-MS to OAR 333-007-0410 specification.

1

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith Lab Director

State License # 010-10166277B9D ISO Accreditation # 99861

11/03/21

Signed On

Kaycha Labs CBGa Crude(Crumble)

N/A Sample Type : Crumble

Page 3 of 4

POTENCY BATCH QC REPORT

METHOD BLANK

j

Cannabinoid	LOQ	Result	Units
CBDV_WET	0.1	<loq< td=""><td>%</td></loq<>	%
CBDVA WET	0.1	<loq< td=""><td>%</td></loq<>	%
'HCV_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BD_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BG_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BDA_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BN_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BGA_WET	0.1	<loq< td=""><td>%</td></loq<>	%
ICVA_WET	0.1	<loq< td=""><td>%</td></loq<>	%
9-THC_WET	0.1	<loq< td=""><td>%</td></loq<>	%
B-THC_WET	0.1	<loq< td=""><td>%</td></loq<>	%
BC_WET	0.1	<loq< td=""><td>%</td></loq<>	%
ICA_WET	0.1	<loq< td=""><td>%</td></loq<>	%
C-A_WET	0.1	<loq< td=""><td>%</td></loq<>	%
TAL CANNABINOIDS	0.1	<loq< td=""><td>%</td></loq<>	%
DTAL CBD	0.1	<loq< td=""><td>%</td></loq<>	%
TAL THC	0.1	<loq< td=""><td>%</td></loq<>	%
DV	0.1	<loq< td=""><td>%</td></loq<>	%
DVA	0.1	<loq< td=""><td>%</td></loq<>	%
G	0.1	<loq< td=""><td>%</td></loq<>	%
D	0.1	<loq< td=""><td>%</td></loq<>	%
BDA	0.1	<loq< td=""><td>%</td></loq<>	%
icv	0.1	<loq< td=""><td>%</td></loq<>	%
BGA	0.1	<loq< td=""><td>%</td></loq<>	%
3N	0.1	<loq< td=""><td>%</td></loq<>	%
9-THC	0.1	<loq< td=""><td>%</td></loq<>	%
B-THC	0.1	<loq< td=""><td>%</td></loq<>	%
ICVA	0.1	<loq< td=""><td>%</td></loq<>	%
BC	0.1	<loq< td=""><td>%</td></loq<>	%
ICA	0.1	<loq< td=""><td>%</td></loq<>	%
BCA	0.1	<loq< td=""><td>%</td></loq<>	%

Analytical Batch - CE000476POT

Instrument Used : HPLC 2030 EID 005 - High Concentration

<u>ட</u> ீ LCS				
Cannabinoid	LOQ	Recovery	Units	Recovery Limits
CBG_WET	0.1	101	%	70-130
CBD_WET	0.1	98.1	%	70-130
BDA_WET	0.1	98.7	%	70-130
HCV_WET	0.1	102.4	%	70-130
BGA_WET	0.1	99	%	70-130
BN_WET	0.1	104.1	%	70-130
9-THC_WET	0.1	101.1	%	70-130
BC_WET	0.1	100	%	70-130
HCA_WET	0.1	101.6	%	70-130
BC-A_WET	0.1	98.3	%	70-130

Analytical Batch - CE000476POT

Instrument Used : HPLC 2030 EID 005 - High Concentration

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoit content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (LM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith Lab Director

State License # 010-10166277B9D ISO Accreditation # 99861

Signature

11/03/21

Signed On

Kaycha Labs

..... CBGa Crude(Crumble) N/A Sample Type : Crumble

SOLVENT BATCH QC REPORT

METHOD BLANK

j

Residual	LOQ	Result	Units
PROPANE	2500	<loq< td=""><td>ppm</td></loq<>	ppm
METHANOL	1500	<loq< td=""><td>ppm</td></loq<>	ppm
ETHYLENE OXIDE	25	<loq< td=""><td>ppm</td></loq<>	ppm
ETHANOL	500	<loq< td=""><td>ppm</td></loq<>	ppm
ETHYL ETHER	2500	<loq< td=""><td>ppm</td></loq<>	ppm
ACETONE	2500	<loq< td=""><td>ppm</td></loq<>	ppm
2-PROPANOL	2500	<loq< td=""><td>ppm</td></loq<>	ppm
ACETONITRILE	205	<loq< td=""><td>ppm</td></loq<>	ppm
DICHLOROMETHANE	300	<loq< td=""><td>ppm</td></loq<>	ppm
ETHYL ACETATE	2500	<loq< td=""><td>ppm</td></loq<>	ppm
2-BUTANOL	2500	<loq< td=""><td>ppm</td></loq<>	ppm
TETRAHYDROFURAN	360	<loq< td=""><td>ppm</td></loq<>	ppm
CYCLOHEXANE	1940	<loq< td=""><td>ppm</td></loq<>	ppm
ISOPROPYL ACETATE	2500	<loq< td=""><td>ppm</td></loq<>	ppm
BENZENE	1	<loq< td=""><td>ppm</td></loq<>	ppm
HEPTANE	2500	<loq< td=""><td>ppm</td></loq<>	ppm
1-4 DIOXANE	190	<loq< td=""><td>ppm</td></loq<>	ppm
2-ETHOXYETHANOL	80	<loq< td=""><td>ppm</td></loq<>	ppm
ETHYLENE GLYCOL	310	<loq< td=""><td>ppm</td></loq<>	ppm
TOLUENE	445	<loq< td=""><td>ppm</td></loq<>	ppm
CUMENE	35	<loq< td=""><td>ppm</td></loq<>	ppm
BUTANES	1250	<loq< td=""><td>ppm</td></loq<>	ppm
HEXANES	15	<loq< td=""><td>ppm</td></loq<>	ppm
PENTANES	833	<loq< th=""><th>ppm</th></loq<>	ppm
XYLENES	271	<loq< th=""><th>ppm</th></loq<>	ppm

Analytical Batch - CE000495SOL

Instrument Used : GCMS-QP2020 EID:0170

្ជំ LCS		HVL,	$\square A X X$	XXXVU
Residual	LOQ	Recovery	Units	Recovery Limits
1-4 DIOXANE	190	100	ppm	50-150
2-BUTANOL	2500	102.3	ppm	50-150
2-ETHOXYETHANOL	80	95.5	ppm	50-150
2-PROPANOL	2500	102.7	ppm	50-150
ACETONE	2500	102.9	ppm	50-150
ACETONITRILE	205	98.1	ppm	50-150
BENZENE	1	100.1	ppm	50-150
CUMENE	35	121.2	ppm	50-150
CYCLOHEXANE	1940	104.1	ppm	50-150
DICHLOROMETHANE	300	102.4	ppm	50-150
ETHANOL	500	103.3	ppm	50-150
ETHYL ACETATE	2500	102.8	ppm	50-150
ETHYL ETHER	2500	102.8	ppm	50-150
ETHYLENE GLYCOL	310	103.9	ppm	50-150
HEPTANE	2500	101.1	ppm	50-150
ISOPROPYL ACETATE	2500	99.8	ppm	50-150
METHANOL	1500	101.3	ppm	50-150
TETRAHYDROFURAN	360	100.9	ppm	50-150
TOLUENE	445	100.7	ppm	50-150

Analytical Batch - CE000495SOL Instrument Used : GCMS-QP2020 EID:0170

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoit content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith Lab Director

State License # 010-10166277B9D ISO Accreditation # 99861

hom

11/03/21

Page 4 of 4